n-皇后问题(DFS问题)

原题题目:

n−皇后问题是指将 n个皇后放在 n×n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。

现在给定整数 n,请你输出所有的满足条件的棋子摆法。

输入格式

共一行,包含整数 n。

输出格式

每个解决方案占 n 行,每行输出一个长度为 n的字符串,用来表示完整的棋盘状态。

其中 . 表示某一个位置的方格状态为空,Q 表示某一个位置的方格上摆着皇后。

每个方案输出完成后,输出一个空行。

注意:行末不能有多余空格。

输出方案的顺序任意,只要不重复且没有遗漏即可。

题解代码:


#include<bits/stdc++.h>
using namespace std;
const int N =20;
char str[N][N];    //用来存储答案
int n;
bool L[N],D[N],FD[N];  //分别存储列,对角线,反对角线的状态
void dfs(int u)
{
    if(u==n)
    {
        for(int i=0;i<n;i++) puts(str[i]);   //对找到的答案进行输出,字符串可以一行一行输出
        puts("");
        return;
    }
    for(int i=0;i<n;i++)
    {
        if(!L[i]&&!D[u+i]&&!FD[n-i+u]) //对列,对角线,反对角线上是否放过Q进行判断
        {
            str[u][i]='Q';
            L[i]=D[u+i]=FD[n-i+u]=true;  //放过Q,把Q位置对应的列,对角线,反对角线状态改变
            dfs(u+1); //下一层
            L[i]=D[u+i]=FD[n-i+u]=false;   //恢复原状
            str[u][i]='.';               //恢复原状
        }
    }
}
int main()
{
      cin>>n;
       for(int i=0;i<n;i++)
       {
           for(int j=0;j<n;j++)
           {
              str[i][j]='.';
           }
       }
       dfs(0);
       return 0;
}

代码微解析:

主要解释下面几句代码为什么这样写(主要简述对角线和反对角线与行和列的关系),其余的照搬DFS模板即可。

 if(!L[i]&&!D[u+i]&&!FD[n-i+u])

 L[i]=D[u+i]=FD[n-i+u]=true; 

 L[i]=D[u+i]=FD[n-i+u]=false;

代码中的u是行,i是列。这里有个规律,以第一行皇冠为例。

正对角线(/):

它的坐标是(3,0),则它对应的正对角线条数是横坐标+纵坐标,D[3+0](D数组是上面代码中用来存储对角线状态的bool类型数组),  即第4条对角线。

反对角线(\):

                                                   //因为起点为0,所以- 1  //从零开始只是为了对应数组下标

而对于反对角线来说,对应(边长-1)(即n的值-1)  + (u(行)   -  i(列) ),同样以第一行的皇冠为例(3,0),FD[7+(0-3)]  (FD数组是上面代码中用来存储反对角线状态的bool类型数组),  对应反对角线的第5条.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值