蓝桥杯每日一练(python)B组

文章介绍了处理蓝桥杯决赛中关于取模问题的Python代码,通过O(m)复杂度寻找是否存在两个数具有相同模的情况。
摘要由CSDN通过智能技术生成

###来源于dotcpp的蓝桥杯真题

题目 2735: 蓝桥杯2022年第十三届决赛真题-取模(Python组)

给定 n, m ,问是否存在两个不同的数 x, y 使得 1 ≤ x < y ≤ m 且 n mod x = n mod y 。

输入格式:

输入包含多组独立的询问。

第一行包含一个整数 T 表示询问的组数。

接下来 T 行每行包含两个整数 n, m,用一个空格分隔,表示一组询问。

输出格式:

输出 T 行,每行依次对应一组询问的结果。如果存在,输出单词 Yes;如果不存在,输出单词 No。

-----------------------------------------

思路借鉴了复杂度O(m求和)的求模

思路:由于取模运算是取两个数相除的余数,而且在python中 % 与 mod函数 他们输出的结果是相同的

因此在这里就使用 % 代替。 由题目可知,一共有m个数,若是取模时,假设我现在取k个数,前k个数有

k个不同的模,当我们取到第k+1个数时,它应该会有k+1个不同的模给到我们,否则它就有相同的模出现

对于第一个数的取模为1,n % i = i - 1 (这是不同数取模的结果) 当 n % i != i - 1时,则存在两个不

同的数取得相同的模

如果你还是晕晕的,这是我的手算草稿。

请看代码

T = int(input()) #接受组数

#因为是问存不存在,所以只要找到一次两个余数相同的数即可
def same_res(n,m):
    for i in range(1,m+1):
        if n % i != i - 1:
            return "Yes"
    else:
        return "No"

#循环T次
for j in range(T):
    n,m = map(int,input().split())
    print(same_res(n,m))

### 蓝桥杯A Python 竞赛相关信息及备考资源 #### 官方平台与练习资源 蓝桥杯官方已为Python开设专门的练习平台,参赛者可以通过该平台获取大量练习机会并熟悉考试环境。此平台不仅提供历年真题解析,还支持在线编程提交功能,帮助选手更好地适应比赛节奏[^1]。 #### 备考策略建议 针对想要参加Python A竞赛的学生而言,初期应集中精力夯实Python语言的基础语法知识点;之后逐步过渡到数据结构、算法分析等内容的学习上。对于零基础学员来说,在短时间内快速入门并通过针对性训练提高解题效率是一种可行的方法[^3]。 #### 时间规划指导 有成功晋级国赛的经验分享指出,在距离正式赛事约两周时间内进行高强度复习冲刺是较为合理的安排方式之一。这段时间内除了继续巩固理论知识外,更需注重实战演练——即每日定时定量完成一定数量的真实模拟试题,以此来检验自己的学习成果并调整状态至最佳水平[^4]。 #### 成绩目标设定 根据过往参赛者的反馈来看,在省级比赛中能够解答出大部分简单题目即可获得一等奖的好成绩;而在国家级别的较量当中,则至少要正确解决两道以上较难题目才能确保二等奖以上的荣誉[^5]。 ```python # 示例:简单的Python代码片段用于理解逻辑思维的重要性 def fibonacci(n): if n <= 0: return "输入正整数" elif n == 1 or n == 2: return 1 else: a, b = 1, 1 for _ in range(3, n + 1): a, b = b, a + b return b ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值