目录
关于“取整”你得知道
首先谈谈关于数学取整的问题
//demo 1
#include <stdio.h>
int main()
{
//本质是向0取整
int i = -2.9;
int j = 2.9;
printf("%d\n", i); //结果是:-2
printf("%d\n", j); //结果是:2
return 0;
}
//有一个trunc取整函数,同作用
//demo 2
#include <stdio.h>
#include <math.h> //因为使用了floor函数,需要添加该头文件
int main()
{
//本质是向-∞取整,注意输出格式要不然看不到结果
printf("%.1f\n", floor(-2.9)); //-3
printf("%.1f\n", floor(-2.1)); //-3
printf("%.1f\n", floor(2.9)); //2
printf("%.1f\n", floor(2.1)); //2
return 0;
}
//demo 3
#include <stdio.h>
#include <math.h>
int main()
{
//本质是向+∞取整,注意输出格式要不然看不到结果
printf("%.1f\n", ceil(-2.9)); //-2
printf("%.1f\n", ceil(-2.1)); //-2
printf("%.1f\n", ceil(2.9)); //3
printf("%.1f\n", ceil(2.1)); //3
return 0;
}
//demo4
#include <stdio.h>
#include <math.h>
int main()
{
//本质是四舍五入
printf("%.1f\n", round(2.1));
printf("%.1f\n", round(2.9));
printf("%.1f\n", round(-2.1));
printf("%.1f\n", round(-2.9));
return 0;
}
汇总例子
#include <stdio.h>
#include <math.h>
int main()
{
const char * format = "%.1f \t%.1f \t%.1f \t%.1f \t%.1f\n";
printf("value\tround\tfloor\tceil\ttrunc\n");
printf("-----\t-----\t-----\t----\t-----\n");
printf(format, 2.3, round(2.3), floor(2.3), ceil(2.3), trunc(2.3));
printf(format, 3.8, round(3.8), floor(3.8), ceil(3.8), trunc(3.8));
printf(format, 5.5, round(5.5), floor(5.5), ceil(5.5), trunc(5.5));
printf(format, -2.3, round(-2.3), floor(-2.3), ceil(-2.3), trunc(-2.3));
printf(format, -3.8, round(-3.8), floor(-3.8), ceil(-3.8), trunc(-3.8));
printf(format, -5.5, round(-5.5), floor(-5.5), ceil(-5.5), trunc(-5.5));
return 0;
}
结论:浮点数(整数/整数),是有很多的取整方式的。
聊聊取模
取模概念:
如果a和d是两个自然数,d非零,可以证明存在两个唯一的整数 q 和 r,满足 a = q*d + r 且0≤r<d。其中,q 被称为商,r 被称为余数。
//对应代码
#include <stdio.h>
int main()
{
int a = 10;
int d = 3;
printf("%d\n", a%d); //结果是1
//因为:a=10,d=3,q=3,r=1 0<=r<d(3)
//所以:a = q*d+r -> 10=3*3+1
return 0;
}
如果是下面的代码呢?
#include <stdio.h>
int main()
{
int a = -10;
int d = 3;
//printf("%d\n", a/d); //C语言中是-3,很好理解
printf("%d\n", a%d);
return 0;
}
gcc 4.8.5环境下
python 3.7.3环境下
备注:大家如果条件允许,可以在更多的计算器或者语言中进行测试。这里够了。
结论:很显然,上面关于取模的定义,并不能满足语言上的取模运算。
因为在C中,现在-10%3出现了负数,根据定义:满足 a = q*d + r 且0 ≤ r < d,C语言中的余数,是不满足定义的, 因为,r<0了。
故,大家对取模有了一个修订版的定义:
如果a和d是两个自然数,d非零,可以证明存在两个唯一的整数 q 和 r,满足 a = q*d + r , q 为整数,且0 ≤ |r| < |d|。其中,q 被称为商,r 被称为余数。
有了这个新的定义,那么C中或者Python中的“取模”,就都能解释了。
解释C: -10 = (-3) * 3 + (-1)
解释Python:-10 = (?)* 3 + 2,其中,可以推到出来,'?'必须是-4(后面验证).即-10 = (-4)* 3 + 2,才能满足定义。
所以,在不同语言,同一个计算表达式,负数“取模”结果是不同的。我们可以称之为分别叫做正余数 和 负余数
是什么决定了这种现象
由上面的例子可以看出,具体余数r的大小,本质是取决于商q的。
而商,又取决谁呢?取决于除法计算的时候,取整规则。
取余和取模一样吗?
细心的大家,应该看到了,我上面的取模都是带着" "的。说明这两个并不能严格等价(虽然大部分情况差不多) 取余或者取模,都应该要算出商,然后才能得出余数。
本质 1 取整:
取余:尽可能让商,进行向0取整。
取模:尽可能让商,向-∞方向取整。
故:
C中%,本质其实是取余。
Python中%,本质其实是取模。(后面不考虑python,减少难度)
理解链:
对任何一个大于0的数,对其进行0向取整和-∞取整,取整方向是一致的。故取模等价于取余。
对任何一个小于0的数,对其进行0向取整和-∞取整,取整方向是相反的。故取模不等价于取余。
同符号数据相除,得到的商,一定是正数(正数vs正整数),即大于0!
故,在对其商进行取整的时候,取模等价于取余。
本质 2 符号:
参与取余的两个数据,如果同符号,取模等价于取余。
vs2022环境下
//计算数据同符号
#include <stdio.h>
int main()
{
printf("%d\n", 10/3);
printf("%d\n\n", 10 % 3);
printf("%d\n", -10 / -3);
printf("%d\n\n", -10 % -3);
return 0;
}
python 3.7环境下
>>> print(10//3)
3
>>> print(10%3)
1
>>> print(-10//-3)
3
>>> print(-10%-3)
-1
题外话: 注意:python中 / 默认是浮点数除法,//才是整数除法,并进行-∞取整
>>> print(10/3)
3.3333333333333335
>>> print(-10/3)
-3.3333333333333335
>>> print(10//3)
3
>>> print(-10//3)
-4
结论:通过对比试验,更加验证了,参与取余的两个数据,如果同符号,取模等价于取余
如果参与运算的数据,不同符号呢?
#include <stdio.h>
int main()
{
printf("%d\n", -10 / 3); //结果:-3
printf("%d\n\n", -10 % 3); //结果:-1 为什么? -10=(-3)*3+(-1)
printf("%d\n", 10 / -3); //结果:-3
printf("%d\n\n", 10 % -3); //结果:1 为什么?10=(-3)*(-3)+1
return 0;
}
//明显结论:如果不同符号,余数的求法,参考之前定义。而余数符号,与被除数相同
真的吗?
python环境下
>>> print(-10//3)
-4
>>> print(10//-3)
-4
>>> print(-10%3)
2
>>> print(10%-3)
-2
wtf , 完犊子,为什么呢?
重新看看定义:
如果a和d是两个自然数,d非零,可以证明存在两个唯一的整数 q 和 r,满足 a = q*d + r , q 为整数,且0 ≤ |r| < |d|。其中,q 被称为商,r 被称为余数。
a = q*d + r 变换成 r = a - q*d 变换成 r = a + (-q*d) 对于:x = y + z,这样的表达式,x的符号 与 |y|、|z|中大的数据一致。
而r = a + (-q*d)中,|a| 和 |-q*d|的绝对值谁大,取决于商q的取整方式。
c是向0取整的,也就是q本身的绝对值是减小的。
如:
-10/3=-3.333.33 向0取整 -3. a=-10 |10|, -q*d=-(-3)*3=9 |9|
10/-3=-3.333.33 向0取整 -3. a=10 |10|, -q*d=-(-3)*(-3)=-9 |9|
绝对值都变小了
python是向-∞取整的,也就是q本身的绝对值是增大的。
-10/3=-3.333.33 //向-∞取整 -4. a=-10 |10|, -q*d= -(-4)*3=12 |12|
10/-3=--3.333.33 //向-∞取整 -4. a=10 |10|, -q*d= -(-4)*(-3)=-12 |12|
绝对值都变大了
结论:如果参与取余的两个数据符号不同,在C语言中(或者其他采用向0取整的语言如:C++,Java),余数符号,与被除数 相同。
总结
1.浮点数(或者整数相除),是有很多的取整方式的。
2.如果a和d是两个自然数,d非零,可以证明存在两个唯一的整数 q 和 r,满足 a = q*d + r , q 为整数,且0 ≤ |r| < |d|。其中,q 被称为商,r 被称为余数。
3.在不同语言,同一个计算表达式,“取模”结果是不同的。我们可以称之为分别叫做正余数 和 负余数。
4.具体余数r的大小,本质是取决于商q的。而商,又取决于除法计算的时候,取整规则。
5.取余vs取模: 取余尽可能让商,进行向0取整。取模尽可能让商,向-∞方向取整。
6.参与取余的两个数据,如果同符号,取模等价于取余。
7.如果参与取余的两个数据符号不同,在C语言中(或者其他采用向0取整的语言如:C++,Java),余数符号,与被 除数相同。(因为采用的向0取整)
基本上关于C语言中有关取模和取余的内容已经描述完了,如果帮助到大家,麻烦点赞加关注哦!!