【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

目录

💥1 概述

参与调峰的储能系统配置方案及经济性分析研究

储能辅助电网调峰原理分析

一、储能系统在电力调峰中的作用与价值

二、典型调峰储能系统配置方案

三、经济性分析框架与关键指标

四、外部影响因素与优化路径

五、典型场景运行案例分析

结论与建议

📚2 运行结果

2.1 模式设置

2.2 新能源消纳曲线:(模式1-模式3) 

2.3 场景3下的运行结果 

2.4 储能配置结果 

2.5 两个灵敏度分析 

🎉3 文献来源

🌈4 Matlab代码、数据、文章


💥1 概述

参与调峰的储能系统配置方案及经济性分析研究

储能辅助电网调峰原理分析

目前电网的调峰形势为在负荷尖峰时段有足够的旋转备用空间,但在负荷低谷时期,机组的向下

调节灵活性严重不足,从而导致大量弃风产生。储能辅助火电机组调峰基本原理如图 1 所示。

从图 1 中可以看出,储能辅助火电机组深度调峰可以有效改善电网调峰压力,减少弃风产生。而

储能系统产生的调峰效果主要取决于其配置方案,配置越高其调峰效果越好,但成本也随之大幅上升。储能系统的配置应兼顾经济性指标及技术性指标。

一、储能系统在电力调峰中的作用与价值
  1. 调峰机制与储能功能定位
    调峰指在较长时段内平衡发电量与用电负荷的供需关系,通过储能系统实现"削峰填谷"。其核心价值体现在:

    • 负荷曲线平滑:通过充电(低谷期)和放电(高峰期)双向能量流动,降低峰谷差。如图2所示,储能系统可将负荷曲线波动减少30%-50%。

    • 系统稳定性提升:缓解火电机组频繁启停压力,延长设备寿命。
    • 新能源消纳促进:通过存储间歇性风光发电,提升可再生能源渗透率。
  2. 技术经济双重价值

    功能维度技术价值经济价值
    调峰能力响应速度<100ms,效率>90%补偿收益0.3-0.7元/kWh
    调频辅助调节精度提升40%调频里程补偿0.1-0.5元/MW·h
    备用容量15分钟内满功率响应容量租赁收益200元/kWh·a

二、典型调峰储能系统配置方案
  1. 分类与选型标准
    根据应用场景和技术特征,主流配置方案分为四类(基于整理):

    类型储能时长核心技术典型应用场景技术指标示例
    容量型>4小时锂离子电池、液流电池区域电网削峰填谷容量配置≥20%新能源装机
    能量型1-2小时磷酸铁锂电池、压缩空气储能工业园区负荷调节充放电效率≥85%
    功率型<30分钟飞轮、超级电容AGC调频辅助功率密度>5kW/kg
    备用型>15分钟锂离子电池电网紧急备用SOC保持80%±5%


2. 典型配置方案
(1) 集中式储能电站

  • 技术参数:容量100MW/200MWh级,充放电深度90%,循环寿命≥6000次
  • 运行策略:采用两充两放模式,配合分时电价实现峰谷套利
  • 案例:某220kV并网锂电池电站,年调峰收益3900万元,容量租赁收益2000万元

(2) 火储联合调峰系统

  • 技术参数:熔融盐储热温度565℃,储热密度>700MJ/m³
  • 经济性:降低火电机组调峰成本10.1%,提升风电消纳3.68%

(3) 分布式聚合储能

  • 配置特点:多节点聚合形成虚拟电厂,容量5-50MW
  • 收益模型:套利收益+调峰补偿+需求响应补贴
三、经济性分析框架与关键指标
  1. 全生命周期成本模型

    • kp​: 功率成本系数(元/kW)
    • kq: 容量成本系数(元/kWh)
    • 典型值:锂电系统初始投资1.5-2.0元/Wh
  2. 度电成本(LCOS)

    技术类型2024年LCOS(元/kWh)2030年预测
    锂电储能0.3-0.4<0.2
    全钒液流电池0.4-0.50.3-0.35
    压缩空气储能0.25-0.350.18-0.22
  3. 收益模型

    • 某50MWh独立储能项目IRR达9.7%(调峰补偿1元/kWh,年调用500次)
    • 共享储能项目综合收益可达6200万元/年(含套利、租赁、补贴)
四、外部影响因素与优化路径
  1. 政策驱动机制

    • 电价机制:分时电价峰谷差>0.7元/kWh时具备经济性,如浙江实现两充两放策略
    • 补贴政策:地方度电补贴0.1-0.3元,容量补贴30元/kWh·a
  2. 技术降本路径

    降本维度当前水平2030年目标降本贡献度
    电芯成本0.5元/Wh0.3元/Wh40%
    系统效率85%-90%92%-95%15%
    循环寿命6000次10000次25%
  3. 市场机制创新

    • 容量租赁市场:形成200-300元/kWh·a的交易价格
    • 虚拟电厂聚合:提升分布式储能利用率30%以上
五、典型场景运行案例分析

案例1:某省100MW/200MWh共享储能电站

  • 运行策略:日两充两放(23:00-7:00充电,11:00-13:00/19:00-21:00放电)

  • 经济指标

    收益项金额(万元/年)占比
    峰谷套利390063%
    容量租赁200032%
    调峰补偿3005%
    IRR12.4%-

案例2:火储联合深度调峰系统

  • 技术参数:配置20%机组容量的熔融盐储热系统
  • 经济效益
    • 调峰成本下降10.1%
    • 年增收2100万元(含节省燃料成本与调峰补偿)

结论与建议

  1. 配置方案选择:优先采用"锂电+液流电池"混合储能,兼顾功率与能量需求
  2. 经济性提升路径:通过容量租赁、虚拟电厂聚合提升收益率3-5个百分点
  3. 政策建议:推动峰谷价差>0.8元/kWh,建立容量补偿机制

该研究体系通过技术参数优化与收益模式创新,可为储能参与调峰提供全生命周期经济性解决方案,支撑新型电力系统建设。

📚2 运行结果

2.1 模式设置

基础调峰:50%出力,Pmin=0.5*Pmax

深度调峰:40%出力,Pmin=0.4*Pmax,  600mw可以深度调峰,200-300不可以(50%出力)。

投油,30%出力。

场景设置

2.2 新能源消纳曲线:(模式1-模式3) 

2.3 场景3下的运行结果 

2.4 储能配置结果 

2.5 两个灵敏度分析 

部分代码:

%储能电池(对应公式30)
 summ2=0;
for l=1:1:24
   summ2=summ2+max(x2(1,l),0)*ng+min(x2(1,l),0)/np;
end
c =[c,summ2==0];%容量平衡约束
summ4=E0;
for l=1:1:24
   summ4=summ4+max(x2(1,l),0)*ng+np*min(x2(1,l),0);
   c =[c,Ehmax*0.1<=summ4<=Ehmax*0.9];%容量上下限约束
end
for l=1:1:24
   summ9=max(x2(1,l),0)*ng+np*min(x2(1,l),0);
   c =[c,-Pgmax<=summ9<=Pgmax];%功率上下限约束
end
%风机
c =[c,0<=x3<=fj];%可再生能源消纳约束
%日负荷平衡约束
for i=1:24
    c =[c,sum(x1(:,i))-sum(x2(:,i))+sum(x3(:,i))==load(i)];%
end

%% 目标函数

%储能设备(公式1)
C1=(CE*1000*Ehmax+CP*1000*Pgmax)*(rs*(1+rs)^Nz)/(((1+rs)^Nz)-1)/(365*Nz);
%储能设备(公式2)
C2=0;
for i=1:24
        C2=C2+abs(x2(1,i))*0.0075*1000;%储能充放电成本
end
%火电机组(公式3)
C3=0;
for j=1:6
    for i=1:24
        C3=C3+ag(j)*x1(j,i)*x1(j,i)+bg(j)*x1(j,i)+cg(j);%机组发电成本
    end
end
%火电机组(公式4-5)
C4=0;
for j=1:6
    for i=1:24
        C4=C4+0.05*1000*abs(x1(j,i));%机组发电成本
    end
end
C5=0;
% for j=1:2
%     for i=1:24
%         C5=C5+b2(j,1)*4.8*6130;%投油成本
%     end
% end
%弃风成本(公式6)
C6=0;
for i=1:24
    C6=C6+0.61*1000*max(fj(i)-x3(1,i),0);%
end
%储能套利(公式7)
C7=0;
for i=1:24
    C7=C7+Pgs(i)*(max(x2(1,i),0)*ng+np*min(x2(1,i),0));
end
%储能补偿(公式8)
C8=0;
for i=1:24
    C8=C8+0.4*max(x2(1,i),0)*ng;%调单位补偿
end
%火电机组补偿(公式9)
C9=0;
for j=1:6
for i=1:24
    C9=C9+0.01*(Pmin1(j)-x1(j,i));%max(0,Pmin1(j)-x1(j,i)),求解时间变长
end
end
%新能源消纳(公式15)
C10=0;
for i=1:24
    C10=C10+0.05*(x3(1,i)-xn(i));%指标归一化
end


%调峰成本(公式28-29)
GD=5000;%基础调峰成本
GC=5000*1.2;%不投油深度调峰成本
GO=4.8*6130;%投油深度调峰成本

%储能电池(对应公式30)
 summ2=0;
for l=1:1:24
   summ2=summ2+max(x2(1,l),0)*ng+min(x2(1,l),0)/np;
end
c =[c,summ2==0];%容量平衡约束
summ4=E0;
for l=1:1:24
   summ4=summ4+max(x2(1,l),0)*ng+np*min(x2(1,l),0);
   c =[c,Ehmax*0.1<=summ4<=Ehmax*0.9];%容量上下限约束
end
for l=1:1:24
   summ9=max(x2(1,l),0)*ng+np*min(x2(1,l),0);
   c =[c,-Pgmax<=summ9<=Pgmax];%功率上下限约束
end
%风机
c =[c,0<=x3<=fj];%可再生能源消纳约束
%日负荷平衡约束
for i=1:24
    c =[c,sum(x1(:,i))-sum(x2(:,i))+sum(x3(:,i))==load(i)];%
end

%% 目标函数

%储能设备(公式1)
C1=(CE*1000*Ehmax+CP*1000*Pgmax)*(rs*(1+rs)^Nz)/(((1+rs)^Nz)-1)/(365*Nz);
%储能设备(公式2)
C2=0;
for i=1:24
        C2=C2+abs(x2(1,i))*0.0075*1000;%储能充放电成本
end
%火电机组(公式3)
C3=0;
for j=1:6
    for i=1:24
        C3=C3+ag(j)*x1(j,i)*x1(j,i)+bg(j)*x1(j,i)+cg(j);%机组发电成本
    end
end
%火电机组(公式4-5)
C4=0;
for j=1:6
    for i=1:24
        C4=C4+0.05*1000*abs(x1(j,i));%机组发电成本
    end
end
C5=0;
% for j=1:2
%     for i=1:24
%         C5=C5+b2(j,1)*4.8*6130;%投油成本
%     end
% end
%弃风成本(公式6)
C6=0;
for i=1:24
    C6=C6+0.61*1000*max(fj(i)-x3(1,i),0);%
end
%储能套利(公式7)
C7=0;
for i=1:24
    C7=C7+Pgs(i)*(max(x2(1,i),0)*ng+np*min(x2(1,i),0));
end
%储能补偿(公式8)
C8=0;
for i=1:24
    C8=C8+0.4*max(x2(1,i),0)*ng;%调单位补偿
end
%火电机组补偿(公式9)
C9=0;
for j=1:6
for i=1:24
    C9=C9+0.01*(Pmin1(j)-x1(j,i));%max(0,Pmin1(j)-x1(j,i)),求解时间变长
end
end
%新能源消纳(公式15)
C10=0;
for i=1:24
    C10=C10+0.05*(x3(1,i)-xn(i));%指标归一化
end


%调峰成本(公式28-29)
GD=5000;%基础调峰成本
GC=5000*1.2;%不投油深度调峰成本
GO=4.8*6130;%投油深度调峰成本

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]李军徽,张嘉辉,李翠萍等.参与调峰的储能系统配置方案及经济性分析[J].电工技术学报,2021,36(19):4148-4160.DOI:10.19595/j.cnki.1000-6753.tces.200678.

🌈4 Matlab代码、数据、文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值