括号匹配
public static boolean isValid(String s) {
// 创建一个栈用于存储左括号
Stack<Character> stack = new Stack<>();
// 遍历字符串中的每个字符
for (char c : s.toCharArray()) {
if (c == '(' || c == '[' || c == '{') {
// 如果是左括号,将其压入栈中
stack.push(c);
} else {
if (stack.isEmpty()) {
// 如果栈为空,说明没有匹配的左括号,返回 false
return false;
}
// 弹出栈顶元素
char top = stack.pop();
if ((c == ')' && top != '(') || (c == ']' && top != '[') || (c == '}' && top != '{')) {
// 如果右括号与栈顶的左括号不匹配,返回 false
return false;
}
}
}
// 如果栈为空,说明所有括号都匹配,返回 true
return stack.isEmpty();
}
子数组最大和
/**
* 计算子数组的最大和
* @param nums 整数数组
* @return 子数组的最大和
*/
public static int maxSubArray(int[] nums) {
// 当前子数组的最大和
int currentMax = nums[0];
// 全局子数组的最大和
int globalMax = nums[0];
// 从数组的第二个元素开始遍历
for (int i = 1; i < nums.length; i++) {
// 更新当前子数组的最大和
currentMax = Math.max(nums[i], currentMax + nums[i]);
// 更新全局子数组的最大和
globalMax = Math.max(globalMax, currentMax);
}
return globalMax;
}
循环升序数组最小值
public class FindMinInRotatedSortedArray {
// 此方法用于在循环升序数组中查找最小值
public static int findMin(int[] nums) {
// 初始化左指针,指向数组起始位置
int left = 0;
// 初始化右指针,指向数组末尾位置
int right = nums.length - 1;
// 当左指针小于右指针时,继续循环查找
while (left < right) {
// 计算中间位置,使用 left + (right - left) / 2 避免整数溢出
int mid = left + (right - left) / 2;
// 如果中间元素大于右边界元素,说明最小值在 mid 右侧
if (nums[mid] > nums[right]) {
// 更新左指针到 mid + 1 位置
left = mid + 1;
} else {
// 否则,最小值在 mid 或 mid 左侧,更新右指针到 mid 位置
right = mid;
}
}
// 当 left 和 right 相遇时,该位置的元素即为最小值
return nums[left];
}
public static void main(String[] args) {
// 定义一个示例循环升序数组
int[] nums = {3, 4, 5, 1, 2};
// 调用 findMin 方法查找最小值并打印结果
System.out.println("数组中的最小值是: " + findMin(nums));
}
}
字符串解码
class Solution {
// 该方法用于对输入的编码字符串进行解码
public String decodeString(String s) {
// 用于存储重复次数的栈
Stack<Integer> countStack = new Stack<>();
// 用于存储待拼接的字符串的栈
Stack<String> stringStack = new Stack<>();
// 用于构建当前正在处理的字符串
StringBuilder currentString = new StringBuilder();
// 用于记录当前的重复次数
int k = 0;
// 遍历输入字符串中的每一个字符
for (char c : s.toCharArray()) {
// 如果当前字符是数字
if (Character.isDigit(c)) {
// 更新重复次数 k,考虑到多位数的情况
k = k * 10 + (c - '0');
// 如果当前字符是左括号 [
} else if (c == '[') {
// 将当前的重复次数 k 压入 countStack 栈中
countStack.push(k);
// 将当前已经构建好的字符串压入 stringStack 栈中
stringStack.push(currentString.toString());
// 清空 currentString,准备处理括号内的字符串
currentString = new StringBuilder();
// 重置重复次数 k 为 0
k = 0;
// 如果当前字符是右括号 ]
} else if (c == ']') {
// 从 stringStack 栈中弹出上一个字符串
StringBuilder decodeString = new StringBuilder(stringStack.pop());
// 从 countStack 栈中弹出重复次数
int count = countStack.pop();
// 根据重复次数,将当前括号内的字符串添加到 decodeString 后面
for (int i = 0; i < count; i++) {
decodeString.append(currentString);
}
// 更新 currentString 为 decodeString
currentString = decodeString;
// 如果当前字符是普通字符
} else {
// 将该字符添加到 currentString 后面
currentString.append(c);
}
}
// 返回最终解码后的字符串
return currentString.toString();
}
}
合并区间
class Solution {
public static int[][] merge(int[][] intervals) {
// 如果输入数组为空或者长度为 0,直接返回空数组
if (intervals == null || intervals.length == 0) {
return new int[0][0];
}
// 按照区间的起始位置进行排序
Arrays.sort(intervals, Comparator.comparingInt(a -> a[0]));
// 用于存储合并后的区间
List<int[]> merged = new ArrayList<>();
// 取第一个区间作为初始的合并区间
int[] current = intervals[0];
// 遍历剩余的区间
for (int i = 1; i < intervals.length; i++) {
int[] interval = intervals[i];
// 如果当前区间的结束位置大于等于下一个区间的起始位置,说明有重叠
if (current[1] >= interval[0]) {
// 更新当前区间的结束位置为两个区间结束位置的最大值
current[1] = Math.max(current[1], interval[1]);
} else {
// 没有重叠,将当前区间加入到合并列表中
merged.add(current);
// 更新当前区间为下一个区间
current = interval;
}
}
// 将最后一个合并的区间加入到列表中
merged.add(current);
// 将列表转换为二维数组并返回
return merged.toArray(new int[merged.size()][]);
}
}
合并两个有序数组
假设有两个有序数组 nums1
和 nums2
,要将 nums2
合并到 nums1
中,使 nums1
成为一个有序数组。nums1
的长度足以容纳 nums2
的元素。
class Solution {
// 该方法用于将 nums2 合并到 nums1 中,使 nums1 成为一个有序数组
public void merge(int[] nums1, int m, int[] nums2, int n) {
// p1 指向 nums1 中有效元素的最后一个位置
int p1 = m - 1;
// p2 指向 nums2 中最后一个元素的位置
int p2 = n - 1;
// p 指向合并后数组的最后一个位置
int p = m + n - 1;
// 当 p1 和 p2 都未越界时,进行比较和赋值操作
while (p1 >= 0 && p2 >= 0) {
// 如果 nums1[p1] 大于 nums2[p2]
if (nums1[p1] > nums2[p2]) {
// 将 nums1[p1] 放到合并后数组的 p 位置
nums1[p] = nums1[p1];
// p1 指针左移一位
p1--;
} else {
// 否则将 nums2[p2] 放到合并后数组的 p 位置
nums1[p] = nums2[p2];
// p2 指针左移一位
p2--;
}
// p 指针左移一位
p--;
}
// 如果 nums2 中还有剩余元素,将其依次放入 nums1 中
while (p2 >= 0) {
nums1[p] = nums2[p2];
p2--;
p--;
}
}
}
合并K个有序数组
import java.util.PriorityQueue;
class Solution {
// 该方法用于合并多个有序数组
public int[] mergeKArrays(int[][] arrays) {
// 如果输入的数组为空或者长度为 0,直接返回一个空数组
if (arrays == null || arrays.length == 0) {
return new int[0];
}
// 创建一个最小堆,用于存储每个数组的当前最小值
PriorityQueue<Node> minHeap = new PriorityQueue<>((a, b) -> a.val - b.val);
// 计算所有数组的总长度
int totalLength = 0;
// 遍历每个数组
for (int i = 0; i < arrays.length; i++) {
// 如果当前数组不为空
if (arrays[i].length > 0) {
// 将当前数组的第一个元素及其所在数组的索引和位置信息封装成 Node 放入最小堆中
minHeap.offer(new Node(arrays[i][0], i, 0));
// 累加当前数组的长度到总长度中
totalLength += arrays[i].length;
}
}
// 创建一个用于存储合并后结果的数组
int[] result = new int[totalLength];
// 结果数组的索引
int index = 0;
// 当最小堆不为空时,继续合并操作
while (!minHeap.isEmpty()) {
// 从最小堆中取出当前最小值对应的 Node
Node node = minHeap.poll();
// 将该最小值放入结果数组中
result[index++] = node.val;
// 如果该元素所在数组还有剩余元素
if (node.col + 1 < arrays[node.row].length) {
// 将该数组的下一个元素及其位置信息封装成 Node 放入最小堆中
minHeap.offer(new Node(arrays[node.row][node.col + 1], node.row, node.col + 1));
}
}
// 返回合并后的结果数组
return result;
}
// 自定义 Node 类,用于存储元素的值、所在数组的索引和元素在数组中的位置
static class Node {
int val;
int row;
int col;
// 构造函数,用于初始化 Node 对象
Node(int val, int row, int col) {
this.val = val;
this.row = row;
this.col = col;
}
}
}