自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 高斯分布与高斯过程

想象一下,你有一个特殊的机器,你把一个唯一的输入 x 塞进去,它会吐出一个输出 y。但是,这个机器有点不靠谱,每次你给它同一个 x,它吐出的 y 都不一样。简单说,由一个输入得到一个输出,这个输出是一个不确定量,高斯分布是对这个不确定量的“最可能值”和“偏离这个最可能值的程度”的一种数学描述。当一个随机变量服从高斯分布时,它在均值附近取值的概率最高,离均值越远,取值的概率越低,形成我们熟悉的钟形曲线。协方差越大,这些点之间的关系越紧密,生成的曲线也就越平滑。它可以告诉你,y 最有可能的值是什么(均值)。

2025-08-20 15:14:11 335

原创 MFWPN 论文研究笔记

本片主要介绍了MFWPN论文相关工作,也是对笔者自己学习过程中的简要概述,如有错误请指出。

2025-07-01 21:59:57 618

原创 GO-LSD的稍微解释

3. 端到端兼容性:与D-FINE的细粒度分布优化(FDR)框架无缝结合,形成定位任务“预测-优化-蒸馏”闭环。◦ 残差预测:深层网络不再直接预测边界框的绝对坐标或完整分布,而是预测浅层分布的残差调整量。▪ 深层简化任务:深层不再直接预测原始坐标,而是对浅层分布的残差进行微调(见步骤3)。◦ 代价矩阵构建:计算浅层预测框与深层预测框之间的相似性(通常基于IoU或位置偏移量)。• 目标:对齐不同解码层的预测框(如浅层与深层),确保知识传递的对应性。• 目标:使浅层网络的概率分布逼近深层优化后的分布。

2025-03-12 16:31:20 316

原创 D-FINE 论文理解

D-FINE是中国科学技术大学团队提出的一种基于Transformer架构的实时目标检测模型,其核心创新在于重新定义边界框回归任务。,通过“细粒度分布优化(FDR)”和“全局最优定位自蒸馏(GO-LSD)”两大方法,在不增加额外训练成本的前提下,显著提升了定位精度和检测效率。该模型在COCO数据集上以 78 FPS 的速度达到59.3% 的平均精度(AP),超越了 YOLO 系列和 RT-DETR 系列的最新版本。研究团队分别使用 D-FINE 和 YOLO11 对YouTube。

2025-03-11 14:53:29 3514 2

原创 深度学习目标检测新范式:DETR系列模型的简单概述

DETR系列模型通过不断迭代,从最初的端到端检测框架发展为涵盖实时、轻量、高精度的完整体系。未来,随着基础模型能力的提升,DETR有望在自动驾驶、机器人感知等领域实现更广泛的应用。

2025-03-10 16:34:18 1204

原创 DETR 论文理解

DETR是首个基于Transformer的端到端目标检测模型。流程上,DETR首先通过CNN提取图像特征并展平为特征序列,添加二维位置编码后输入Transformer encoder,通过自注意力机制生成包含全局上下文学习的特征向量。decoder则利用可学习的object queries(初始化为零或随机初始化)和encoder的输出进行交互,生成多个解码后的特征向量,每个向量对应一个目标候选(即每个向量要么得到ground truth的匹配,要么被忽略为背景)。

2025-03-09 23:55:08 1149

原创 笔记(一):YOLOv11——关于训练时出现的“神经网络模型的结构和参数信息”的解释

上述参数在不训练时,可以在yolo11-obb.yaml中查看模型的整体结构。位置通常在中。内容如下(这里只截图的一部分)1、模型结构(1)Conv是卷积层,用来提取图像特征。(2)C3k2是一个模块,可能包含多个卷积层和其他操作,用来进一步处理特征。(3)SPPF和C2PSA是特殊的模块,用来增强特征提取能力。(4)Upsample是上采样层,用来放大特征图。(5)Concat是拼接层,用来将不同层的特征拼接在一起。(6)OBB是输出层,用来生成最终的检测结果。2、参数数量这个模型总共有。

2025-02-22 17:19:54 2250

原创 YOLOv11——从零开始制作OBB数据集

本文介绍了从零开始制作YOLOv11-OBB数据集的完整流程。首先,安装roLabelImg进行数据标注,生成原始XML文件,并将其转换为DOTA格式的TXT标签文件。接着,划分数据集并将DOTA格式转换为YOLOv11-OBB所需的格式。随后,配置数据集的yaml文件和yolov11-obb.yaml文件,完成模型设置。最后,进行模型训练和预测。整个过程涵盖了数据标注、格式转换、模型配置及训练预测,为YOLOv11-OBB模型的实现提供了详细指导。

2025-02-16 16:30:57 3585 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除