AI安全——对抗攻击与防御

1.AI对抗攻防背景

2.AI安全的技术内涵

不可解释性(黑箱模型)

数据强依赖性:数据偏差和噪声,对抗样本攻击

3.AI对抗攻防相关实例

ai算法易受微小扰动影响

“微小扰动”:肉眼难以分辨

单像素攻击

医学领域

目标检测

机器阅读理解:问题预测与情感分类

语音识别

金融风险预测攻击

推荐系统与共同访问图

促销攻击

4.攻防原理

对抗攻击分类:逃逸攻击(evasion attack):修改输入数据攻击一个训练完成的模型

                         投毒攻击(poisoning attack):修改输入数据攻击一个重新训练的模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

2301_80355452

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值