1.AI对抗攻防背景
2.AI安全的技术内涵
不可解释性(黑箱模型)
数据强依赖性:数据偏差和噪声,对抗样本攻击
3.AI对抗攻防相关实例
ai算法易受微小扰动影响
“微小扰动”:肉眼难以分辨
单像素攻击
医学领域
目标检测
机器阅读理解:问题预测与情感分类
语音识别
金融风险预测攻击
推荐系统与共同访问图
促销攻击
4.攻防原理
对抗攻击分类:逃逸攻击(evasion attack):修改输入数据攻击一个训练完成的模型
投毒攻击(poisoning attack):修改输入数据攻击一个重新训练的模型