其被广泛地应用 于无人质检、智能巡检、质量控制等各种生产与运维场景中.
一.工业缺陷检测的背景与特点
工业 缺陷检测面临着诸多难点:缺陷样本匮乏、缺陷的可视性低、形状不规则、类型未知等,
直接使用异常检测 方法难以满足工业缺陷检测的任务需求.
二.介绍工业缺陷检测问题的定义,分析研究难点与挑战
异常:点异常、 上下文异常和集群异常。
点异常:又称为离群值 (outliers)[9], 描述数值上偏离正 常样本的独立数据。与异常相近的概念还包括新颖点(novelty)和分布外数据。
上下文异常:同样描述数据点,其数值属于正常范围,但不符合局部上下文规律。
集群异常:描述一系列相关数据的集合,集合中的每一个实例的数值在单独考察时都处于正常值域,但集 合整体的相关性特征不服从正常模式。
一般的图像异常检测往往仅需区分正常与异常样本,而工业缺陷检测更关注于检测 图像中的异常像素.
虽然缺陷通常属于未知模式,但仍然可以从已有的缺陷样本中发现一定的共性,因此总结缺陷与 背景的类型有助于针对性地设计检测方法.
工业视觉缺陷检测任务一般包括分类和定位.
定位任务的目标是找到缺陷在图像 中的具体区域,根据缺陷区域的描述方式可分为检测(检测框)与分割(像素级).
难点:
1.数据难点:样本匮乏.未知性与主观性.可视性低.种类繁多.背景复杂.
2.任务挑战:高精度.低开销.
三.基于3种任务设置介绍近年主流的工业缺陷检测方法
主要从三个角度讨论:数据增强与合成为数据贪婪的检测模型提供足够的训练集;
模型压缩与加速技术面向落地使用中的低 存储开销与实时性需求;
阈值设置旨在找到推理阶段最合适的分类边界.