VisionPro硬币检测(CogPMAlignTool,CogResultsAnalysisTool工具),功能:分类个数,总和)

硬币检测

创建CogToolBlock工具

将图像源引入CogToolBlock工具
在这里插入图片描述

创建CogPMAlignTool模版匹配工具

引入图像源

在这里插入图片描述

训练模版(1角)

先试用掩膜工具将硬币内的纹路遮住
在这里插入图片描述

选择矩形选择

在这里插入图片描述

将一角硬币覆盖选择填充当前选项

在这里插入图片描述

填充完,选择画笔工具,选择橡皮擦

在这里插入图片描述

在这里插入图片描述

擦出轮廓

在这里插入图片描述

应用

在这里插入图片描述

训练模型

在这里插入图片描述

查找概数可以改多些

在这里插入图片描述

复制粘贴两个模版匹配工具

第复制的一个工具

修改缩放可以识别出5角,参考下图

在这里插入图片描述

第复制的二个工具

修改缩放可以识别出1元,参考下图
在这里插入图片描述

为每个模版匹配工具添加终端

在这里插入图片描述

添加输出,其余工具重复此操作

在这里插入图片描述

添加结果分析工具(计算总和)

将每个CogPMAlignTool工具的Result.Count拖入该工具

在这里插入图片描述

打开工具添加3个变量,可以命名

在这里插入图片描述

工具会出现3个可输入终端,将各类型的硬币个数分别拖入
在这里插入图片描述
在这里插入图片描述

依图做法并将总和输出
在这里插入图片描述

为CogResultsAnalysisTool1添加终端,浏览选择所有(未过滤)
在这里插入图片描述

添加输出

在这里插入图片描述

创建四个标签

将每个模版匹配的统计个数引入对应标签的InputInteger

注意:总和是Double类型

在这里插入图片描述

所有硬币数量标签参数,位子根据喜好调整

在这里插入图片描述

总和标签参数
在这里插入图片描述

结果

在这里插入图片描述

### VisionPro 硬币识别与 CogResultsAnalysisTool 的使用 在 VisionPro 中实现硬币识别的任务可以通过多种工具完成,其中 `CogResultsAnalysisTool` 是用于分析检测结果的重要组件之一。以下是关于如何利用该工具以及相关脚本设计的详细介绍。 #### 1. **硬币识别的整体流程** 硬币识别通常涉及以下几个阶段: - 图像采集:获取包含硬币的目标图像。 - 预处理:调整亮度、对比度或其他参数以便于后续操作。 - 特征提取:定位并提取硬币的关键特征(如边缘轮廓或直径)。 - 分类判断:基于预定义的标准判定硬币类别及其状态。 为了支持这些功能,在 VisionPro 平台下可以采用特定工具链组合来构建完整的解决方案[^1]。 #### 2. **引入 PMAlign 和 Results Analysis Tool** 当提到需要扩展某些额外的结果数据时,“PMAlign”作为模式匹配的核心算法能够提供精确位置信息;而新加入的 “结果分析器 (Results Analysis tool)” 则进一步增强了对整体作业状况的理解能力。具体来说: - **PMAlign**: 它负责找到目标物体的位置和方向,并返回一系列关联属性值给下游模块调用。 - **TBInspectionTest ToolBlock / CogResultsAnalysisTool**: 此处提及到的是一个更高级别的决策单元——它不仅接收来自上游各环节传递过来的数据包,还会综合考量设定阈限条件之后给出最终结论(比如合格与否)。这一步骤对于确保产品质量至关重要[^2]。 #### 3. **示例代码展示** 下面是一个简单的 Python 脚本片段演示了如何配置上述两个主要组成部分之间的交互逻辑: ```python from vtapi import * def setup_pmalign_and_analysis(): pm_align_tool = CreateTool("PMAlign") # 创建 PMAlign 工具实例 # 设置 PMAlign 参数... results_analysis_tool = CreateTool("CogResultsAnalysisTool") # 初始化结果分析工具 # 将 PMAlign 输出连接至 结果分析器输入端口 ConnectOutputToInput(pm_align_tool.Outputs["Position"], results_analysis_tool.Inputs["AlignmentData"]) # 自定义业务规则应用于 ResultAnalysisTool ... if __name__ == "__main__": setup_pmalign_and_analysis() ``` 此段伪代码展示了基本框架搭建过程中的几个关键点,实际应用过程中还需要针对项目需求做更多细节上的定制化修改。 #### 4. **注意事项** 尽管本文提供了理论指导和技术路线图,但在真正实施之前仍需考虑如下因素: - 数据质量直接影响模型表现效果; - 合理分配资源以平衡性能开销同精度要求间的关系; - 不断优化现有方案直至满足预期指标为止。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值