前言
递归是学习C语言函数一个绕不开的话题,那什么是递归呢?
其实之前扫雷的Spread函数就运用了递归,本质上是一种解决方法,在C语言中,就是函数自己调用自己
这种思想很美妙,也很强大,但是一开始你可能会感到有些困难,不要怕,试着理解它
一、递归是什么?
递归的思想
把一个大型复杂问题层层转化成一个与原问题相似,但规模较小的子问题来求解,直到子问题不能再被拆分,递归就结束了,所以递归的思考方式就是把大事化小的过程
递归中的递就是递推的意思,归就是回归的意思,接下来请你慢慢体会
递归的限制条件
递归在书写的时候,有2个必要条件:
1.递归存在限制条件,当满足这个限制条件的时候,递归便不再继续
2.每次递归调用之后越来越接近这个限制条件
我们之后会逐步体会这两个限制条件
二、递归举例
举例1:求n的阶乘
一个正整数的阶乘是所有小于及等于该数的正整数的积,并且0的阶乘为1,自然数n的阶乘写作n!
n = n * (n - 1)!
我们发现当n等于0的时候,n的阶乘是1,其余n的阶乘都是可以通过公式计算
n的阶乘的递归公式如下:
那我们就可以写出函数Fact求n的阶乘,假设Fact(n)就是求n的阶乘,那么Fact(n - 1)就是求n - 1的值
函数如下:
int Fact(int n)
{
if (n == 0)
return;
else return n * Fact(n - 1);
}
实际上,这个递推和回归进行的过程如下:
如果是用代码图的方式来看的话,假设n为3,那么一开始是先走的else分支,n为3,Fact(n - 1)函数执行,同样的走到n == 0的时候才回退,具体如下箭头
举例2:顺序打印一个整数的每一位
拿到这个题目,我们会想怎么得到一个数的每一位,显然,/10%10的方法大家早已见过,可问题在于,这样得到的结果是倒着打印一个数的每一个数
我们联想上文中的递归图,都是从头走到尾,再从尾走到头,请注意这个从尾走到头的过程,这是一个逆序,既然我们只能方便地拿到一个整数的末尾,不如我们一直递推到最前面的一位,再边回退边打印到最后一位,逆逆得正
多动脑,自然就写得自然
递归图如下:
另外,我还想说的是,每一次函数调用,都会向内存栈区上申请一块空间
这一块空间主要是用来存放函数的局部变量,和函数调用过程中的上下文的信息,这个一块空间一般叫:函数的运行时堆栈,也叫函数栈帧空间
以上,应该可以解释如果一个死递归函数调用好多次后,虽然没有创建任何变量,还是会导致栈溢出的原因
三、递归与迭代
递归毫无疑问是一种很好的编程技巧,但是和很多技巧一样,也是可能被误用的,就像举例1一样,看到推导的公式,很容易就被写成递归的形式
我们必须认识到递归的两面性,一面它能让代码变得简洁优美,展现编写它的程序员不错的代码水平
另一面,我们也要认识到如前文所说,函数每次调用都要在栈区申请一块内存空间,这块空间被称为函数栈帧,如果函数不返回的话,函数对应的栈帧空间就一直被占用,所以如果函数调用中存在递归调用的话,每一次递归函数调用都会开辟属于自己的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间,所以如果采用函数递归的方式完成代码,递归层次太深,就会浪费太多的栈帧空间,也可能引起栈溢出而导致崩溃(stack overflow)
基于此,我们通常可以考虑使用迭代的方式,(通常情况下,就是循环)
迭代法求阶乘
现在,我们来个具体的例子,比较递归和迭代对于内存的消耗
斐波那契问题
一个数列,从第三项开始,第三项的和为前两项之和,那么请问第50个数的值是多少?
这是递归代码
我们运行程序,结果发现结果一直不显示,打开任务管理器,发现程序一直在跑,没有偷懒,假如有风扇的话,这个时候一定在狂转
为何呢?我们来看看递归的流程图
可以发现,这里的复杂度其实是次方级别的,随着数据的上升呈现恐怖的增长,本质上源于计算重复率太高了,换成迭代就好很多
总结
关于递归,其实你可以回想一下高中的数学归纳法,它们很像
递归问题还有汉诺塔问题和青蛙跳台阶的问题
后期我们在学习数据结构的时候,会经常使用递归,初期学习的时候,可以画一下递归图,而后面就要尝试把它看成是一个抽象的过程,到时候请慢慢体会。