- 博客(782)
- 资源 (314)
- 问答 (1)
- 收藏
- 关注
原创 2.2.5 ASPICE的需求变更管理
通过规范化和有效的需求变更管理实践,团队可以更好地控制项目进度、降低变更引起的风险,并确保软件产品能够按照客户期望的方式交付。变更识别:团队需要建立一个机制来及时识别和记录所有的需求变更请求,包括变更的来源、原因、影响范围等信息。变更决策:基于变更评估结果,项目管理团队需要做出决策,确定是否接受变更、如何实施变更以及调整项目计划等。变更实施:一旦变更被批准,团队需要跟踪并监控变更的实施过程,确保按照计划实施变更并控制变更范围。变更验证:在变更实施后,对变更进行验证,确认变更已经正确实施并达到预期效果。
2025-06-12 09:14:42
46
原创 2.2.4 ASPICE的需求跟踪
在ASPICE中,需求跟踪是一项非常重要的活动,它涉及追踪需求从定义到实现的整个过程,确保每个需求都得到满足,并且可以跟踪到相应的设计、开发和测试活动。需求跟踪的目的是确保软件开发团队对每个需求进行有效管理和控制,避免需求变更引起的风险和不一致性。通过有效的需求跟踪,团队可以更好地管理和控制项目需求,确保软件产品能够按照客户期望的方式开发,并最大程度地满足客户需求。需求追踪矩阵:建立需求追踪矩阵,将需求与设计文档、代码文件和测试用例等相关文档进行关联,确保每个需求都得到满足。
2025-06-11 08:32:20
103
原创 2.2.3 ASPICE的需求确认
ASPICE的需求确认是汽车软件开发过程中重要的一环,它涉及与利益相关方共同验证和确认需求,以确保需求描述准确、完整并符合客户期望。制定确认计划:在需求确认阶段,团队需要制定确认计划,明确确认的范围、方式和时间安排,确定谁将参与确认活动,以确保确认进程顺利进行。需求文档更新:根据需求确认的结果,及时更新需求文档,确保文档与最新的需求状态保持一致,作为后续软件开发和测试的参考依据。通过有效的需求确认,团队可以确保项目的需求准确性和一致性,避免后期的需求变更和修正,提高软件产品的质量和客户满意度。
2025-06-10 08:40:07
132
原创 2.2.2 ASPICE的需求分析
ASPICE的需求分析是汽车软件开发过程中至关重要的一环,它涉及到对需求进行详细分析、验证和确认,以确保软件产品能够满足客户和用户的需求。通过规范化和有效的需求分析实践,团队可以更好地理解和管理需求,确保软件开发过程中的需求准确性、一致性和可追踪性。需求可追踪性:建立需求之间的追踪关系,确保每个需求都可以被跟踪到相应的设计、开发和测试活动,以便于需求变更管理和风险控制。这有助于避免后期的需求误解和变更。需求优先级排序:根据项目目标和客户需求,对需求进行优先级排序,确定哪些需求是关键的、紧急的或者次要的。
2025-06-09 08:51:02
243
原创 2.2.1 ASPICE的需求收集
ASPICE的需求收集是汽车软件开发过程中非常重要的一环,它涉及到从各种利益相关方获取、理解和记录项目需求的过程。收集需求:与各利益相关方沟通和交流,通过访谈、问卷调查、会议等方式,收集各类需求,包括功能性需求、非功能性需求、约束性需求等。需求分析:对收集到的需求进行详细分析,确保需求清晰、准确且具体。文档化:将收集到的需求信息记录在文档中,建立起一份完整的需求文档,作为后续软件开发过程的参考和指导依据。验证需求:与利益相关方共同验证需求,确保需求描述与期望一致,达成共识并避免后期的需求误解和变更。
2025-06-08 19:30:20
168
原创 2.2 ASPICE的需求工程
ASPICE的需求工程是指在汽车软件开发过程中对需求进行管理、分析、定义和跟踪的一系列活动。需求收集:需求工程的第一步是从不同的利益相关方(如客户、市场、产品经理等)收集需求。这包括功能性需求、非功能性需求、约束性需求等。需求跟踪:需求跟踪是指跟踪需求从定义到实现的整个过程,确保每个需求都得到满足。通过规范化和有效的需求工程实践,团队可以确保软件开发过程中需求的准确性、一致性和可追踪性,从而提高项目的成功率和交付质量。需求确认:在需求确认阶段,团队与利益相关方共同验证需求,确保需求描述准确且完整。
2025-05-30 09:30:46
150
原创 2.1.3 ASPICE的敏捷开发
通过采用敏捷开发,团队可以更好地应对变化,快速交付高质量的软件产品,满足客户需求,同时符合汽车行业的质量标准和规范要求。高度灵活性:敏捷开发强调对需求变化的快速响应,团队可以根据客户反馈和市场变化进行调整,有利于符合不断变化的需求。重视团队合作:敏捷开发鼓励团队成员之间的密切合作和沟通,促进信息共享和问题解决,提高团队的生产力和效率。持续改进:敏捷开发强调持续学习和改进,通过每个迭代的回顾和反思,团队可以不断优化开发过程和提升软件质量。
2025-05-29 08:45:48
201
原创 2.1.2 ASPICE的增量式/迭代式开发
总的来说,ASPICE的增量式/迭代式开发方法适应于需求不断变化、要求快速交付并且需要持续改进的项目。这有助于降低风险和加快产品上市时间。客户参与:增量式/迭代式开发鼓励客户参与开发过程,可以及时获取客户反馈,从而更好地满足客户需求。灵活性:增量式/迭代式开发具有较强的灵活性,可以根据项目需求和变化灵活调整开发计划和优先级。质量控制:通过频繁的测试和验证,增量式/迭代式开发有助于提高软件质量并减少缺陷数量。持续改进:增量式/迭代式开发强调持续改进,通过多次迭代逐步完善软件功能和性能。
2025-05-28 08:52:48
182
原创 2.1.2 ASPICE的增量式/迭代式开发
总的来说,ASPICE的增量式/迭代式开发方法适应于需求不断变化、要求快速交付并且需要持续改进的项目。这有助于降低风险和加快产品上市时间。客户参与:增量式/迭代式开发鼓励客户参与开发过程,可以及时获取客户反馈,从而更好地满足客户需求。灵活性:增量式/迭代式开发具有较强的灵活性,可以根据项目需求和变化灵活调整开发计划和优先级。质量控制:通过频繁的测试和验证,增量式/迭代式开发有助于提高软件质量并减少缺陷数量。持续改进:增量式/迭代式开发强调持续改进,通过多次迭代逐步完善软件功能和性能。
2025-05-27 08:40:25
120
原创 2.1.1 ASPICE的V模型
ASPICE的V模型是一种常用的软件开发过程模型,特别适用于汽车行业。V模型中的每个阶段都有对应的验证活动,确保软件开发过程的有效性和质量。易于追踪:由于V模型中每个阶段都有明确的关联和对应,因此易于进行项目进度跟踪和问题定位,有助于及时发现和解决软件开发过程中的问题。总的来说,ASPICE的V模型是一种结构化、阶段性的软件开发过程模型,有助于提高软件开发质量、降低风险,并符合汽车行业的特殊需求。阶段性:V模型强调软件开发过程的阶段性,每个阶段都有明确的输入和输出,确保每个阶段的工作都得到验证和确认。
2025-05-26 10:54:02
186
原创 计算机视觉算法
计算机视觉算法是一种技术,通过使用数字图像处理和模式识别技术,让计算机能够理解和解释视觉输入。:包括Faster R-CNN、Mask R-CNN等,用于目标检测和实例分割。:如生成对抗网络(GAN)等,用于图像生成和增强。:用于图像分类、目标检测等任务的深度学习算法。:用于图像分类、特征提取等任务的监督学习算法。:用于图像分割、图像压缩等无监督学习算法。:用于增强图像对比度和亮度的图像处理算法。:用于降维和特征提取的线性变换算法。:用于目标检测和人体姿态识别的算法。:用于图像特征提取和匹配的算法。
2025-05-23 08:40:02
251
原创 强化学习算法介绍和代码例程
在这个例程中,我们首先创建了CartPole环境,然后定义了一个简单的Q-learning算法来训练代理在CartPole问题上学习最优策略。你可以根据需要调整学习率、折扣因子、探索率以及训练次数来应用强化学习算法解决不同的问题。强化学习(Reinforcement Learning, RL)是一种机器学习方法,通过代理与环境的交互来学习如何做出决策以最大化累积奖励。在强化学习中,代理根据观测到的状态选择动作,并获得环境反馈的奖励或惩罚,从而调整策略以实现长期回报最大化的目标。
2025-05-22 08:53:45
183
原创 生成对抗网络算法介绍和代码例程
生成对抗网络(Generative Adversarial Network, GAN)是由生成器(Generator)和判别器(Discriminator)两部分组成的深度学习模型。生成器负责生成逼真的数据样本,而判别器则尝试区分生成器生成的假样本和真实样本。GAN的训练过程通过优化博弈的方式让生成器不断提高生成样本的逼真度,同时使判别器难以区分真伪样本。在训练过程中,生成器通过生成逼真的手写数字图像来欺骗判别器,而判别器则努力识别生成器生成的假样本和真实样本。
2025-05-21 08:30:32
179
原创 循环神经网络算法介绍和代码例程
在这个例程中,我们首先加载了IMDb电影评论情感分析数据集,并对数据进行预处理,然后创建了一个包含Embedding层和SimpleRNN层的循环神经网络模型,进行训练并评估模型性能。循环神经网络(Recurrent Neural Network, RNN)是一种具有循环结构的神经网络,用于处理序列数据,如文本、时间序列等。RNN中的神经元不仅接收输入数据,还接收上一个时间步的输出作为输入,因此能够捕捉序列数据中的时间信息。
2025-05-20 08:46:21
140
原创 卷积神经网络算法介绍和代码例程
卷积神经网络(Convolutional Neural Network, CNN)是一种专门用于处理图像和视频数据的深度学习模型,其主要特点是引入了卷积层、池化层和全连接层来提取图像中的特征。CNN通过滤波器(卷积核)的卷积运算来捕获图像的局部特征,并通过池化层降低特征图的维度,最终在全连接层中实现分类或回归任务。在这个例程中,我们首先加载了MNIST手写数字数据集,并对数据进行预处理,然后创建了一个包含卷积层、池化层和全连接层的卷积神经网络模型,进行训练并评估模型性能。
2025-05-19 11:17:53
126
原创 多层感知器算法介绍和代码例程
在这个例程中,我们首先生成了一个二分类的示例数据集,然后将数据集划分为训练集和测试集,接着创建了一个包含两个隐藏层(分别有100和50个神经元)的多层感知器模型,并进行训练和预测。多层感知器(Multilayer Perceptron, MLP)是一种最基本的前馈神经网络模型,由一个输入层、一个或多个隐藏层和一个输出层组成。每个神经元都与前一层的所有神经元连接,并且每个连接都有一个权重。MLP通过前向传播和反向传播算法来学习数据特征和调整权重,从而实现对复杂模式的建模和预测。
2025-05-17 10:13:09
178
原创 深度学习算法介绍
深度学习算法是一种基于人工神经网络结构的机器学习方法,其核心理念是通过多层次的神经元组成的神经网络来模拟人类大脑的工作原理。:GAN由生成器和判别器两部分组成,在训练过程中,生成器试图生成逼真的样本,而判别器则尝试区分真实样本和生成器生成的样本。GAN被广泛应用于图像生成、风格迁移等领域。:CNN是专门用于处理图像和视频数据的深度学习模型,通过卷积层、池化层和全连接层来提取图像中的特征,广泛应用于计算机视觉领域。:MLP是最基础的深度学习模型,由多个神经元层组成,每一层的神经元与下一层的所有神经元连接。
2025-05-16 10:51:21
159
原创 朴素贝叶斯算法介绍和代码例程
朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理和特征条件独立假设的分类算法。它假设特征之间相互独立,通过计算给定类别下特征的概率来进行分类预测。朴素贝叶斯算法适用于文本分类、垃圾邮件过滤、情感分析等任务。使用训练数据计算各个特征在每个类别中出现的概率。根据特征条件独立性假设,将特征概率相乘得到类别的后验概率。选择具有最高后验概率的类别作为预测结果。虽然朴素贝叶斯算法对特征独立性有较强的假设,但在实际应用中表现良好,并且具有计算效率高、易于实现等优点。
2025-05-15 09:45:45
151
原创 神经网络算法介绍和代码例程
神经网络是一种模拟人类大脑神经元网络结构的机器学习算法。它通过多个神经元之间的连接和激活函数来建模复杂的非线性关系,用于解决分类、回归、聚类等问题。神经网络通常包含输入层、隐藏层(可包含多层)和输出层。神经元:模拟生物神经元的基本计算单元,接收输入并通过激活函数产生输出。权重:连接神经元之间的参数,用于调整输入信号的影响力。偏置:每个神经元的偏移量,影响神经元的激活状态。激活函数:引入非线性性质,常见的包括Sigmoid、ReLU、Tanh等。反向传播算法。
2025-05-14 10:17:25
268
原创 随机森林算法介绍和代码例程
随机森林(Random Forest)是一种集成学习方法,通过构建多个决策树并综合它们的预测结果来完成分类或回归任务。随机森林在每棵决策树的训练过程中引入了随机性,包括对数据和特征的随机采样,以降低过拟合风险并提高模型的泛化能力。从原始数据集中随机抽取部分样本(有放回抽样)形成新的训练集。针对每个训练集构建一个决策树,并在每个节点上随机选择一部分特征进行分裂。对于分类问题,通过投票方式或平均值来确定最终预测结果;对于回归问题,通过平均值来确定最终预测结果。
2025-05-13 08:51:34
203
原创 K均值聚类算法介绍和代码例程
K均值(K-means)聚类是一种常见的无监督学习算法,用于将数据点划分为K个簇。该算法通过迭代的方式将数据点分配到与其最近的簇,并更新簇的中心位置,直至达到收敛条件。初始化K个簇的中心点(质心)。将每个数据点分配到离其最近的质心所属的簇。更新每个簇的质心位置为该簇所有数据点的平均值。重复步骤2和步骤3,直到质心位置不再发生变化或达到迭代次数。K均值聚类通常应用于数据集没有预先标记类别信息的情况,对数据进行聚类以发现内在的结构。
2025-05-12 09:37:11
211
原创 支持向量机算法介绍和代码例程
支持向量机是一种强大的监督学习算法,用于分类和回归任务。其基本思想是找到一个最优的超平面,将不同类别的数据点分隔开,并使得边界到最近的数据点的距离最大化。这些最靠近最佳决策边界的数据点称为支持向量。对于线性可分的数据,支持向量机可以通过硬间隔最大化来实现分类;对于线性不可分的数据,则可以通过软间隔最大化来容忍一定程度的误分类。此外,SVM也可通过核技巧将数据映射到高维空间来处理非线性问题。支持向量机具有较好的泛化能力和鲁棒性,广泛应用于图像识别、文本分类、生物信息学等领域。
2025-05-11 08:05:41
196
原创 决策树算法介绍和代码例程
决策树是一种常用的机器学习算法,用于分类和回归任务。决策树通过树状结构表示特征之间的关系,每个内部节点代表一个特征属性,每个分支代表一个特征取值,叶子节点代表最终的分类或回归结果。决策树算法的基本思想是根据训练数据集中特征的不同取值进行划分,选择最优的特征作为当前节点的划分依据,直到达到停止条件(如节点样本数小于阈值、树深度达到限制等)。决策树算法有很多变体,包括ID3、CART(Classification and Regression Trees)、C4.5 和随机森林等。
2025-05-10 20:49:51
333
原创 逻辑回归算法介绍和代码例程
逻辑回归是一种广泛应用于分类问题的机器学习算法,尽管名字中带有“回归”二字,但实际上逻辑回归用于解决二元分类(或多类别分类)问题。逻辑回归通过将线性模型的输出经过一个逻辑函数(通常是sigmoid函数)映射到0和1之间,从而估计输入特征与某个类别之间的概率。逻辑回归模型的数学表达式如下:其中,P(y=1|x) 代表样本 x 属于类别 1 的概率,z 是线性组合的函数。逻辑回归通常用于二元分类问题,例如判断邮件是否为垃圾邮件、预测肿瘤是良性还是恶性等。
2025-05-09 08:28:26
168
原创 线性回归算法介绍和代码例程
线性回归是一种用于建立输入变量与连续输出变量之间线性关系的机器学习算法。其基本思想是通过最小化实际观测值(y)和模型预测值(y_hat)之间的残差平方和来拟合最佳的线性模型。线性回归模型的数学表达式如下:复制代码其中,y 是预测值,b0 是截距,b1, b2, ..., bn 是特征的系数,x1, x2, ..., xn 是输入特征。线性回归适用于连续型因变量与一个或多个自变量之间的关系建模,例如房价预测、销售趋势分析等。
2025-05-08 08:27:50
141
原创 机器学习算法介绍
由多层神经元组成的深度学习模型,适用于处理复杂的非线性关系,广泛应用于图像识别、自然语言处理等领域。:由多个决策树组成的集成学习算法,用于分类和回归任务,提高了模型的泛化能力和稳定性。:用于解决分类问题,输出变量是二元的(0或1),可以用于估计一个事件发生的概率。:基于贝叶斯定理和特征之间条件独立假设的分类算法,常用于文本分类和垃圾邮件过滤。:一种无监督学习算法,将数据点划分为K个簇,使得每个点都属于距离最近的簇中心。:用于分类和回归任务,在高维空间中找到最佳的超平面来分隔不同类别的数据点。
2025-05-07 10:05:05
210
转载 电机控制———将示波器数据(.CSV数据)导入Matlab/Simulink中并进行FFT分析
作者:鲸落链接:https://zhuanlan.zhihu.com/p/1897583297401423665来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。下面这是某次实验记录的A-B-C三相电流 .CSV文件(实验用的是三相电机,转速环电流环均用的PI)。删掉前几行无效数据,并且在第一列插入序号。同时设置单元格格式为数值,小数点后六位。对每列abc三相电流的数据都写上标签。
2025-04-24 13:30:31
63
转载 国外发达国家码农是真混得好么?
上司听了,严肃地对我说,如果真的发生了那样的事,证明PM给的buffer不够多,正是PM无能的表现,并且说story point本来就不是100%准确的,不用因为给错了觉得是自己的问题。2.还是第一家公司,我有一次有个东西答应当天完成的,结果发现我判断失误,实际工作量非常大,我因为答应了当天做完,就在公司做到凌晨2点做完了(那天是周五,做完的时候已经周六了)。后面跟国内做外包的程序员朋友聊天,朋友说上司直接骂他怎么这么笨,我差点惊掉下巴,这可是足以让人丢掉工作的严重情况,朋友却说的云淡风轻。
2025-04-24 09:17:08
37
转载 FOC控制算法中为什么不用反Clark变换,反而用SVPWM替代
算法效率:减少计算步骤,提升实时性;性能优势:提高电压利用率、降低谐波;控制目标匹配:直接服务于磁场定向控制的需求,而非单纯坐标系转换;工业趋势:SVPWM已成为FOC的标准调制方案(如Simulink示例模型和工业变频器设计)。例外情况:若采用基于SPWM重构的SVPWM(如注入零序分量的方法),仍需使用反Clark变换,但此类方案已逐渐被淘汰(参考知乎回答中的“其他SVPWM算法需反Clark”说明)。
2025-04-23 10:26:28
88
转载 为什么华为工作的同学三年左右就离职了?
这类部门优点是,奖金很多,钱拿到手软,工作强度相对也不会很大,因为产品已经成熟,增删改补的工作往往不会很困难 更重要的是,因为有钱,所以可以相对其他部门雇佣更多人完成同量的工作,每个人的工作量相对是少的,简单的,以保证不会出错。我就站在应届生的角度,给每个进去的新人一点科普,这是华为的特点,也是所有企业的缩影,请大家不要对号入座乱造谣某些部门,不然出了问题我可不管。的,有做手机耳机充电器的,啥都有,但是这些东西的特点就是,技术壁垒高,行业利润高,卖出去的是实体。华为的所有部门都是一个盒子制造工厂,有做。
2025-04-23 10:02:06
61
转载 为什么有人说弄懂了《算法导论》的 90%,就超越了 90%的程序员?
码农是个手艺活,也是体力活,反复练习才能形成自己的“工具包”,深刻掌握一两本编码相关的书就够了,java大全什么的,不要觉得搞笑,很多生化环材转计算机,真只练了一本书,比很多学了四年的计算机系的学生工作能力都强,因为他们真掌握了一个手艺。5,程序员大部分能力都不是在书上学的,而是一边工作一边学的,或者说工作需要啥就学啥。钻研精神,学习的激情,做事有始有终的品格,是程序员最重要的品质,我以前领导说他一眼就能看出来谁能吃这碗饭,我后来做管理,也一眼能看出来,绝大部分人根本没激情,不想干这行,也注定干不久。
2025-04-22 09:05:10
22
原创 2.1 ASPICE的流程模型选择
V模型:V模型是ASPICE最常用的流程模型之一,它将软件开发过程划分为需求分析、系统设计、详细设计、编码、单元测试、集成测试、系统测试和验收测试等阶段。V模型强调了开发过程的验证和确认,确保每个阶段的输出符合相应的输入。增量式/迭代式开发:增量式/迭代式开发是另一种常见的ASPICE流程模型选择。敏捷开发:敏捷开发是一种灵活的软件开发方法,适用于快速变化的需求环境。根据项目的特点、团队的实际情况和客户需求,可以选择以上任何一种或结合多种流程模型来进行ASPICE评估和实施。
2025-03-29 08:54:15
288
原创 2.ASPICE的工程过程
在ASPICE(Automotive SPICE)中,工程过程是指汽车行业软件开发项目中的工作流程和方法,旨在确保软件开发活动按照最佳实践和标准进行,以实现高质量、高可靠性的汽车电子系统。ASPICE的工程过程着重于规范化和标准化软件开发流程,通过合理的工程方法和管理实践,确保汽车电子系统的开发过程达到高质量、高效率的要求。工程过程的执行不仅是项目成功的关键,也是汽车行业提升软件开发能力和竞争力的重要手段之一。
2025-03-28 09:03:55
259
原创 1.5.5 ASPICE的沟通与协调
通过有效的沟通与协调实践,项目团队可以提高工作效率、减少误解和冲突,增强团队合作和凝聚力,从而更好地实现项目目标并满足利益相关方的期望。沟通与协调不仅是项目成功的关键要素,也是团队发展和成长的重要推动力。在ASPICE中,沟通与协调是确保项目团队内部和外部各方之间有效交流、密切合作的关键方面。
2025-03-27 08:59:58
207
原创 1.5.4 ASPICE的财务资源管理
通过有效的财务资源管理实践,项目团队可以确保项目在预算范围内完成,并最大程度地利用有限的资源实现项目目标。财务资源管理不仅关乎项目的成本控制和预算执行,还涉及到资源投资决策、风险管理和财务透明度等方面,对项目的长期成功具有重要意义。在ASPICE中,财务资源管理是确保项目预算合理分配和有效利用,以支持项目开发和实施的重要方面。
2025-03-26 09:55:54
150
原创 1.5.3 ASPICE的时间资源管理
通过有效的时间资源管理实践,项目团队可以更好地控制项目进度、降低延误风险,并确保项目按时交付。合理规划和有效利用时间资源不仅可以提高项目交付的质量和可靠性,还可以增强团队的信誉度和竞争力。在ASPICE中,时间资源管理是确保项目时间计划合理安排、有效执行,并及时响应变化的重要方面。
2025-03-25 13:21:20
291
原创 1.5.2 ASPICE的物质资源管理
通过有效的物质资源管理实践,团队可以提高项目开发的效率和质量,减少资源浪费和成本超支的风险。同时,良好的物质资源管理还可以增强团队的工作动力和合作意识,促进项目团队的成功和成长。在ASPICE中,物质资源管理是确保项目团队具有所需的工具、设备和基础设施,以支持项目开发和实施的关键方面。
2025-03-24 09:50:07
260
原创 1.5.1 ASPICE的人力资源管理
通过有效的人力资源管理实践,团队可以充分发挥团队成员的潜力,提高团队的工作效率和生产力,从而更好地实现项目目标并满足利益相关方的期望。团队的成功与否往往取决于其人力资源管理的质量和有效性。在ASPICE中,人力资源管理是确保团队成员具有适当的技能、经验和资源支持,以有效地完成项目任务和达成项目目标的关键方面。
2025-03-21 09:10:30
404
原创 1.5 ASPICE的资源管理
通过有效的资源管理实践,团队可以更好地规划、配置和监控项目资源,提高项目交付的质量、效率和可靠性。资源管理不仅涉及到资源的分配和利用,还需要考虑如何最大化资源的价值,以支持项目成功达成其目标。在ASPICE中,资源管理是确保有效分配和利用项目所需资源的关键方面。
2025-03-20 09:00:58
225
原创 1.4.4 ASPICE的监控和控制
在ASPICE中,监控和控制是确保风险管理过程有效执行并及时应对潜在风险的关键环节。:团队应该持续监控已识别的风险,并关注可能出现的变化或新的风险。这包括对风险登记表进行定期审查和更新,以确保团队始终了解当前项目的风险状况。通过监控风险的实施情况和结果,团队可以及时调整策略或采取额外措施,以确保风险得到有效管理。:通过不断学习和改进风险管理过程,团队可以提高对风险的识别能力、响应速度和管理效率。通过有效的监控和控制,团队可以及时应对潜在风险,减少项目延迟和成本超支的风险,从而提高项目成功的可能性。
2025-03-19 09:01:39
172
C++ functional中的template在编译的时候报错
2016-04-07
TA创建的收藏夹 TA关注的收藏夹
TA关注的人