0-1背包(动态规划C/C++)

 问题分析

        01背包问题在日常生活中很常见,就是你有一个包,可以装多件n件物品,每件物品不可分割,只有装或者不装两种状态,在背包容量允许的条件下,尽量使自己装的价值最大,就是这样一个问题。大家如果还有疑问,可以在哔站上,搜搜相关视频~

        这个比较简单,不多说,直接上代码!

代码实现

//0-1背包问题----动态规划 
#include<bits/stdc++.h>
using namespace std;
const int N=1010;
int v[N];//物品体积 
int w[N];//物品价值 
int dp[N][N];//容量为j时,前i件物品所能装下的最大价值 
int n,m;//物品数量、背包容积 
int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>v[i]>>w[i];
	}
	for(int i=1;i<=n;i++){//遍历第i件物品 
		for(int j=1;j<=m;j++){// 当前背包容量 
			if(v[i]>j){//当前物品装不下 
				dp[i][j]=dp[i-1][j];
			} else{//能装下 
				dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]); //选价值大的 
			} 
		}
	}
	cout<<dp[n][m]<<endl; 
	return 0;
}

运行结果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值