问题分析
01背包问题在日常生活中很常见,就是你有一个包,可以装多件n件物品,每件物品不可分割,只有装或者不装两种状态,在背包容量允许的条件下,尽量使自己装的价值最大,就是这样一个问题。大家如果还有疑问,可以在哔站上,搜搜相关视频~
这个比较简单,不多说,直接上代码!
代码实现
//0-1背包问题----动态规划
#include<bits/stdc++.h>
using namespace std;
const int N=1010;
int v[N];//物品体积
int w[N];//物品价值
int dp[N][N];//容量为j时,前i件物品所能装下的最大价值
int n,m;//物品数量、背包容积
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++){//遍历第i件物品
for(int j=1;j<=m;j++){// 当前背包容量
if(v[i]>j){//当前物品装不下
dp[i][j]=dp[i-1][j];
} else{//能装下
dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]); //选价值大的
}
}
}
cout<<dp[n][m]<<endl;
return 0;
}