搜索与图论3

最小生成树:

定义:在一个加权图(即边具有权重或成本的图)中找到一棵包含所有顶点的树,使得这棵树中的所有边的权重之和尽可能小。

题目对应一般是无向图,正负边都没关系

Prim(普利姆算法):

给定一个无向图,在图中选择若干条边把图的所有节点连起来。要求边长之和最小。在图论中,叫做求最小生成树。

它和 Djikstra 算法特别像

朴素版的Prim:

稠密图  稠密图一般用朴素版Prim

时间复杂度最差:O(n^2)

算法流程:

和Djkstra算法非常相似

例题:

题目:

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G的最小生成树。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v之间存在一条权值为 w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围
1 ≤ n ≤ 500,
1 ≤ m ≤ 10^5,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6

代码:
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, INF = 0x3f3f3f3f;

int n, m;
int g[N][N]; //  存储图
int dist[N]; //  存储各个点到集合的距离
bool st[N]; //  true表示在集合里

int prim()
{
    memset(dist, 0x3f, sizeof dist);  //  初始化
    
    int res = 0;  //  最小生成树所有边的权重和
    for (int i = 0; i < n; i ++ )  //  迭代n次
    {
        //  找出集合外距离集合距离最近的点  如果没有比INF小的t保持-1不变
        int t = -1;
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j; 
                
        if (i && dist[t] == INF) return INF;
        // 如果不是第一次迭代,找出距离集合最近的点后还是无穷,说明有孤立的点,不连通,没有最小生成树
        
        if (i) res += dist[t];
    // 这里先将边加进去因为假如有负环,在用t更新其他点时,当更新到自己时,就是j等于t时,会将自己变小,但是最小生成树不能有环,是不可以的,所以提前累加
        st[t] = true; // 将这个点加进集合
        
        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
        //  用t更新其他点到集合的距离
    }
    
    return res;
    
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    
    cin >> n >> m;
    
    memset(g, 0x3f, sizeof g);
    
    while (m -- )
    {
        int a, b, c;
        cin >> a >> b >> c;
        g[a][b] = g[b][a] = min(g[a][b], c);
    }
    
    int t = prim();
    
    if (t == INF) puts("impossible");  //  不连通
    else cout << t;
    
    return 0;
}

堆优化版的Prim:

稀疏图   一般不常用

时间复杂度最差:O(mlogn)

Kruskal(克鲁斯卡尔算法):

稀疏图  稀疏图一般用Kruskal算法

时间复杂度固定:O(mlogm)

算法思路:

1.将所有边按权重从小到大排序  (可以用快排)O(mlogm)

2.枚举每条边  a b 权重是 c,

        if  a b不连通 
                将这条边加入集合中

过程示例:

其中判断是否行成回路就用并查集,看边两端的点所在集合的代表元素是否相同,相同则说明是在同一个集合里,因为我们在合并的时候是把一个点的父节点指向另一个点,所以我们递归找到最后会找到代表元素,这个点的父节点是自己,

例题:

题目:

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式
第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

数据范围
1 ≤ n ≤ 10^5,
1 ≤ m ≤ 2 ∗ 10^5,
图中涉及边的边权的绝对值均不超过 1000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6

代码:
#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int N = 1e5 + 10, M = 2e5 + 10, INF = 0x3f3f3f3f;

int n, m;
int p[N]; // 存储每个节点的父节点

struct Edge
{
    int a, b, w;
    
    bool operator< (const Edge &W)const  //  重载小于号
    {
        return w < W.w;
    }
}edges[M];

int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);  
//  找到所在集合的代表元素(根节点),如果这个节点的父节点不是自己,就递归找他的父节点的父节点,直到找到根节点
    return p[x];
}

int kruskal()
{
    
    sort(edges, edges + m);  //  以升序排序所有边
    
    int res = 0, cnt = 0;  //  res是最小生成树的所有边权和,cnt是选中的边的数量
    for (int i = 0; i < m; i ++ )  //  遍历所有边
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;
        
        a = find(a), b = find(b);
        if (a != b)  //  如果连个点所在集合的代表元素(根节点)不同,那就是不同的集合,就选用这条边
        {
            p[a] = b;  //  合并两个集合
            res += w;  //  选用这条边
            cnt ++;
        }
    }
    
    if (cnt < n - 1) return INF;  //  如果选用的边不到n - 1条,说明不连通,没有最小生成树
    return res;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    
    cin >> n >> m;
    
    for (int i = 1; i <= n; i ++ ) p[i] = i; // 初始化p数组,初始每个节点的父节点都是自己
    
    for (int i = 0; i < m; i ++ )
    {
        int a, b, w;
        cin >> a >> b >> w;
        edges[i] = {a, b, w};
    }
    
    int t = kruskal();
    
    if (t == INF) puts("impossible");
    else cout << t;
    
    return 0;
}

二分图:

二分图简单来说就是可以把图中的点分成两边,左边的点只与右边的点相连接,右边的点只与左边的点相连接。 还可以说是把所有点分成两个集合,使所有边只出现在集合之间。

特点:一定不含奇数环,可能包含长度为偶数的环,不一定是连通图,没有奇数环的图一定是二分图

染色法:

深度优先遍历

时间复杂度:O(n + m)

判断一个图是不是二分图

算法思路:

用1表示染白色  用2表示染黑色,则所有边的两个端点应该是一个白色一个黑色,遍历一下每个点,如果未染色则染上黑色或者白色,然后遍历所有和这个点连通的点,染上不同的染色

由于图中不含奇数环,所以染色过程中一定没有矛盾, 如果在染色的途中出现矛盾,则一定不是二分图,如果染色完毕没有矛盾则是二分图

例题:

题目:

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环。

请你判断这个图是否是二分图。

输入格式第一行包含两个整数 n 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v之间存在一条边。

输出格式
如果给定图是二分图,则输出 Yes,否则输出 No。

数据范围
1 ≤ n, m ≤ 10^5
输入样例:
4 4
1 3
1 4
2 3
2 4
输出样例:
Yes

代码:
#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int N = 100010, M = 200010;

int n, m;
int e[M], ne[M], h[N], idx;  //  稀疏图用邻接表存储
int color[N];  //  存储各个点的颜色,0代表没染色,1,2代表不同颜色

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

bool dfs(int u, int c)   //  深度优先遍历
{
    color[u] = c;  //  记录这个点的颜色
    
    for (int i = h[u]; i != -1; i = ne[i])  //  遍历所有和u点相邻的点
    {
        int j = e[i];
        if (!color[j])   //  如果这个点没有染色
        {
            if (!dfs(j, 3 - c)) return false;  //  3 - c意思是点j染的是1,则相邻的点染成2反之染成1,如果遍历途中染色失败,返回false
        }
        else if (color[j] == c) return false;
        //  如果和j相邻这个点染色了,并且染的颜色跟j一样,则冲突,返回false
    }
    
    return true; // 如果都没有冲突,返回true
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    
    cin >> n >> m;
    
    memset(h, -1, sizeof h);  //  初始化
    
    while (m -- )
    {
        int a, b;
        cin >> a >> b;
        add(a, b), add(b, a); // 加边
    }
    
    bool flag = true;  //  false表示染色有冲突
    for (int i = 1; i <= n; i ++ )  //  遍历所有点
        if (!color[i])  //  如果没有染色
        {
            if (!dfs(i, 1))  //  就染上1,并且dfs
            {
                flag = false;  // 遍历这个点相邻的点时出现矛盾的话就false
                break;
            }
        }
    
    if (flag) puts("Yes");
    else puts("No");
    
    return 0;
}

匈牙利算法:

时间复杂度最坏:O(mn)   实际运行时间一般远小于O(mn)

匈牙利算法准则:待字闺中,据为己有;名花有主,求他放手。(看别人说的(→_→) )

概念:

匹配:在图论中,“匹配”指的是一个边的集合,其中没有两条边共享同一个顶点。换句话说,匹配是由图中一些边组成的子集,使得每条边都不相邻(即没有公共的顶点)

最大匹配:在一个图中,最大匹配是指包含尽可能多的边的匹配。也就是说,没有更大的匹配可以包含更多的边。

完美匹配:如果一个匹配包含了图中的所有顶点(即每个顶点恰好出现在一条边中),那么这个匹配被称为完美匹配。

算法思路:

给定一个二分图,让求最大匹配

 

例题:

题目:

给定一个二分图,其中左半部包含 n1 个点(编号 1∼n1),右半部包含 n2 个点(编号 1∼n2),二分图共包含 m 条边。

数据保证任意一条边的两个端点都不可能在同一部分中。

请你求出二分图的最大匹配数。

二分图的匹配:给定一个二分图 G,在 G 的一个子图 M 中,M 的边集 {E} 中的任意两条边都不依附于同一个顶点,则称 M 是一个匹配。

二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。

输入格式
第一行包含三个整数 n1、 n2 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。

输出格式
输出一个整数,表示二分图的最大匹配数。

数据范围
1 ≤ n1, n2 ≤ 500,
1 ≤ u ≤ n1,
1 ≤ v ≤ n2,
1 ≤ m ≤ 10^5
输入样例:
2 2 4
1 1
1 2
2 1
2 2
输出样例:
2

代码:
#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int N = 510, M = 100010;

int n1, n2, m;
int h[N], e[M], ne[M], idx;  //  邻接表
int match[N];  //  match[j] = k 表示女孩j的配对男友是k
bool st[N]; // 预定数组 简单来说st的作用就是,避免女生j的现男友k去找备胎的时候,又去找到这个j
  
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}

//递归找匹配
int find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i]) // 遍历这个男生有好感的所有女生
    {
        int j = e[i];
        if (!st[j])  //  这一轮匹配中如果这个女孩没被预定
        {
            st[j] = true;  //  这个女孩就被预定了  就是我先预定着,如果之前和这个女生配对着的男生可以换人,那我这个预定就可以变成配对了
            
            // 如果这个女孩没有配对的男友或者 她的男朋友能不能预定其他有好感的女生
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;  //  配对
                return true;
            }
        }
    }
    //  有好感的全都配对了,失败
    return false;
}
  
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    
    
    cin >> n1 >> n2 >> m;
    
    memset(h, -1, sizeof h);
    
    while (m -- )
    {
        int a, b;
        cin >> a >> b;
        add(a, b);  //  因为只需要从一边找另一边,所以尽管是无向图,但存一个方向就行了
    }
    
    int res = 0;
    for (int i = 1; i <= n1; i ++ )
    {
        memset(st, false, sizeof st);
        if (find(i)) res ++;
    }
    
    cout << res;
    
    return 0;
}

人工智能关于最大二分图的程序代码: #include #include main() { bool map[100][300]; int i,i1,i2,num,num1,que[300],cou,stu,match1[100],match2[300],pque,p1,now,prev[300],n; scanf("%d",&n); for(i=0;i<n;i++) { scanf("%d%d",&cou;,&stu;); memset(map,0,sizeof(map)); for(i1=0;i1<cou;i1++) { scanf("%d",&num;); for(i2=0;i2<num;i2++) { scanf("%d",&num1;); map[i1][num1-1]=true; } } num=0; memset(match1,int(-1),sizeof(match1)); memset(match2,int(-1),sizeof(match2)); for(i1=0;i1<cou;i1++) { p1=0; pque=0; for(i2=0;i2<stu;i2++) { if(map[i1][i2]) { prev[i2]=-1; que[pque++]=i2; } else prev[i2]=-2; } while(p1<pque) { now=que[p1]; if(match2[now]==-1) break; p1++; for(i2=0;i2=0) { match1[match2[prev[now]]]=now; match2[now]=match2[prev[now]]; now=prev[now]; } match2[now]=i1; match1[i1]=now; num++; } if(num==cou) printf("YES\n"); else printf("NO\n"); } } dfs实现过程: #include #include #define MAX 100 bool map[MAX][MAX],searched[MAX]; int prev[MAX],m,n; bool dfs(int data) { int i,temp; for(i=0;i<m;i++) { if(map[data][i]&&!searched[i]) { searched[i]=true; temp=prev[i]; prev[i]=data; if(temp==-1||dfs(temp)) return true; prev[i]=temp; } } return false; } main() { int num,i,k,temp1,temp2,job; while(scanf("%d",&n)!=EOF&&n!=0) { scanf("%d%d",&m,&k); memset(map,0,sizeof(map)); memset(prev,int(-1),sizeof(prev)); memset(searched,0,sizeof(searched)); for(i=0;i<k;i++) { scanf("%d%d%d",&job;,&temp1;,&temp2;); if(temp1!=0&&temp2;!=0) map[temp1][temp2]=true; } num=0; for(i=0;i<n;i++) { memset(searched,0,sizeof(searched)); dfs(i); } for(i=0;i<m;i++) { if(prev[i]!=-1) num++; } printf("%d\n",num); } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值