数学知识1

总结:

1.数论

2.组合计数

3.高斯消元

4.简单博弈论

数论:

1.质数:

定义:质数是指大于1的自然数中,如果只包含1和本身两个约数,这个数就叫质数,或者叫素数。

(1)质数的判定--试除法:

时间复杂度:固定O(sqrt(n))

代码:
bool is_prime(int n)
{
    if (n < 2) return false;
    for (int i = 2; i <= n / i; i ++ )
        if (n % i == 0)
            return false;
            
    return true;
}

【注意】:

这里for循环里面  不推荐写 i <= sqrt(n),因为这样的话每次一个i都要计算一下sqrt(n)会很慢,同时,i * i <= n 也不推荐,因为当 n 比较接近于int的最大值时, i 的平方会有溢出风险就变成负数了, 所以推荐写 i <= n / i

(2)分解质因数--试除法:

时间复杂度:最坏O(sqrt(n))  最好O(logn)

分解质因数(Prime Factorization)是指将一个正整数表示为其质数因子的乘积的过程。具体来说,就是将一个大于1的自然数写成若干个质数的乘积形式。n = p1^a1  * p2^a2  * p3^a3.....pn^an

n里面最多只包含一个大于 sqrt(n)的质因子,假设有两个,两个相乘就大于n了,所以成立

代码:
void divide(int x)
{
    for (int i = 2; i <= x / i; i ++ )  //  优化,只遍历到根号x
    { 
        //  即使遍历到了一个合数(如 4、6、8 等),
        //  这些合数的因子已经在前面的步骤中被去除了,
        if (x % i == 0) 
        {
            int s = 0;
            while (x % i == 0)
            {
                x /= i;
                s ++;
            }
            cout << i << ' ' << s << endl;
        }
       
    }
    if (x > 1) cout << x << ' ' << 1 << endl; 
    //  如果变量 x 的值仍然大于 1,那么此时的 x 必然是一个大于 1 的质数,
    //  因为在此之前已经用所有可能的质数因子去除过了。
    cout << endl;
}

(3)筛质数:

给定一个正整数 n,请你求出 1∼n 中质数的个数。

(i) 最普通的筛法 :

时间复杂度:O(nlogn)

思路:

i从2开始枚举到n,将i的倍数全部标记(筛掉)

代码:
int primes[N], cnt; // primes存储所有质数 cnt是质数的数量
bool st[N]; // true表示被筛掉了

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++] = i;  //  如果没被筛掉 说明是质数 就加进去
        
        for (int j = i + i; j <= n; j += i)  //  把倍数全部筛掉
        {
            st[j] = true;
        }
    }
     cout << cnt << endl;
}
(ii) 埃氏筛法 :

时间复杂度:O(nloglogn)

优化思路:

因为每一个数我们都可以分解质因数,所以我们只需要筛掉所有质数的倍数就行了

质数定理:1到n中有 n / ln n个质数

代码:
int primes[N], cnt; // primes存储所有质数 cnt是质数的数量
bool st[N]; // true表示被筛掉了

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++] = i;  //  如果没被筛掉的话,说明是质数
            
            for (int j = i + i; j <= n; j += i)  
            // 把质数的倍数全部筛掉  
                {
                    st[j] = true;
                }
        }
        
    }
     cout << cnt << endl;
}
(iii) 线性筛法:

时间复杂度: O(n)

思路:

之前筛法中,每个合数可能会被筛多次,为了确保每个合数只会被筛选一次,我们用每个合数的最小质因子来筛选,因为每个合数的最小质因子只有一个,所以每个合数只会被筛选一次,就是n 只会被他的最小质因子筛掉,所以说他是线性的。

首先  primes[j] * i 的最小质因子是 min(primes[j], i 的最小质因子)    

1.当 i % primes[j] != 0 时,   因为primes是从小到大存的所有质数,所以说明此时primes[j] 是小于i的最小质因子的,所以 primes[j] * i的最小质因子就是 primes[j]

2.当 i % primes[j] == 0时, 同样因为primes是从小到大存的所有质数,所以当这种情况发生时,primes[j] 就是 i 的最小质因子 ,所以primes[j] * i 的最小质因子就是 primes[j]

所以,用primes[j]来筛掉 primes[j] * i 是可以的

当 i % primes[j] == 0 时,应该终止,因为如果不终止,下一次循环时会筛掉 primes[j + 1] * i 但是 primes[j + 1] * i 的最小质因子是 min(primes[j + 1],  i的最小质因子) 很显然 primes[j + 1] 是大于primes[j] 的,i的最小质因子不变,并且 因为 i % primes[j] == 0 说明i的最小质因子是 primes[j] ,所以 筛掉的primes[j +1] * i 的最小质因子就是 min (primes[j + 1], primes[j]) 显然是primes[j] ,这个数应该是由 primes[j] 筛掉的,为了避免筛选重复,所以在这里循环终止

为什么能筛掉所有合数:

因为每个合数都有一个最小质因子,对于一个合数x,假设pj是x的最小质因子,i在枚举到x之前,一定会枚举到 x / pj,在这个时候就会被筛掉 

代码:
int primes[N], cnt; // primes存储所有质数 cnt是质数的数量
bool st[N]; // true表示被筛掉了

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++] = i;  //  如果没被筛掉就加进去
            
        for (int j = 0; primes[j] <= n / i; j ++ )  // primes[j] <= n / i就是 primes[j] * i <= n
        {
            st[primes[j] * i] = true;  //  因为primes[j]一定是他的最小质因子,所以把这个数筛掉
            if (i % primes[j] == 0) break;
        }
        
        
    }
     cout << cnt << endl;
}

2.约数

约数(Divisor)是指能够整除另一个数的数。具体来说,如果一个整数 a 能够被另一个整数 b 整除(即除以 b 的结果是一个整数,没有余数),那么 b 就是 a 的一个约数。

(1)试除法求所有约数:

时间复杂度:O(sqrt(n))

思路:

i从1开始遍历到sqrt(n),只遍历较小的因数,如果取模等于0,那就是这个数的约数

代码:
vector<int> get_divisors(int n)
{
    vector<int> res;
    
    for (int i = 1; i <= n / i; i ++ )
    {
        if (n % i == 0)
        {
            res.push_back(i);
            if (i != n / i) res.push_back(n / i); // 特判一下i的平方等于n这种情况
        }
    }
    
    sort(res.begin(), res.end());
    for (auto x : res) cout << x << ' ';
    cout << endl;
        
    return res;
}

(2)求约数个数:

算术基本定理指出:

  • 每个大于1的自然数都可以唯一地分解为一组质数的乘积。
  • 这种质因数分解是唯一的,除了因子的排列顺序之外。

所以每个数都可以写成 N = p1 ^ a1 * p2 ^ a2 * ...pk ^ ak,同时N的每个约数也都可以写成

d = p1 ^ b1 * p2 * b2 *... pk * bk  这里 0 <= bk <=ak, 所以N的约数的个数就等于 b1 到 bk的不同取法,因为每个数的分解质因数是唯一的,所以第一个有0到b1个选法,同样到最后约数个数就是(a1+1)(a2+1)...(ak+1)

代码在下面

(3)求约数之和:

公式: 约数之和 = (p^0 + p^1 + p^2 ... p^a1) *...*(pk^0 + pk^1 + ... +pk^ak)

思路:

例题:

题目:

给定 n 个正整数 ai,请你输出这些数的乘积的约数之和,答案对 109+7 取模。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一个整数 ai。

输出格式
输出一个整数,表示所给正整数的乘积的约数之和,答案需对 109+7 取模。

数据范围
1 ≤ n ≤ 100,
1 ≤ ai ≤ 2×10^9
输入样例:
3
2
6
8
输出样例:
252
 

代码:
#include <iostream>
#include <algorithm>
#include <map>
#include <vector>

using namespace std;

typedef long long LL;

const int N = 110, mod = 1e9 + 7;

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    
    int n;
    cin >> n;
    
    unordered_map<int, int> primes;
    
    while (n -- )
    {
        int x;
        cin >> x;
        
        for (int i = 2; i <= x / i; i ++ )
        {
            while (x % i == 0)
            {
                primes[i] ++;
                x /= i;
            }
        }
        
        if (x > 1) primes[x] ++;
    }
    
    LL res = 1;  //  套用求约数和的公式算(p1^0+p1^1+…+p1^c1)∗…∗(pk^0+pk^1+…+pk^ck)
    for (auto p : primes)
    {
        LL a = p.first, b = p.second;
        LL t = 1;
        
        while (b -- ) t = (t * a + 1) % mod; // b是指数,a是底数,那个质因数,取模是因为防止溢出
        
        res = res * t % mod;
    }
    
    cout << res;
    
    return 0;
}

如果是求个数很简单,套用求个数的公式就行
 

LL res = 1;
    for (auto p : primes)
    {
        res = res * (p.second + 1) % mod;  
    }

(4)求最大公约数:

利用  欧几里得算法 辗转相除法)时间复杂度是 O(logn) 。

算法思路和证明:

代码:
int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a; // 当b等于0时,最大公约数为a,因为任何数与0的最大公约数为那个数
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值