C++哈希表

首先我们来了解一下unordered系列关联式容器

1. unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到logN,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同,本文中只对unordered_map和unordered_set进行介绍。

1.1 unordered_map

  1. unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与其对应的value。
  2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键和映射值的类型可能不同。
  3. 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。
  4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率较低。
  5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问value。
  6. 它的迭代器至少是前向迭代器。

unordered_map的接口说明

unordered_map的容量

函数声明功能介绍
bool empty() const检测unordered_map是否为空
size_t size() const获取unordered_map的有效元素个数

unordered_map的迭代器

函数声明功能介绍
begin返回unordered_map第一个元素的迭代器
end返回unordered_map最后一个元素下一个位置的迭代器
cbegin返回unordered_map第一个元素的const迭代器
cend返回unordered_map最后一个元素下一个位置的const迭代器

unordered_map的元素访问

函数声明功能介绍
operator[]返回与key对应的value,没有一个默认值

需要注意的是:该函数中实际调用哈希桶的插入操作,用参数key与V()构造一个默认值往底层哈希桶中插入,如果key不在哈希桶中,插入成功,返回V(),插入失败,说明key已经在哈希桶中,将key对应的value返回。

unordered_map的查询

函数声明功能介绍
iterator find(const K& key)返回key在哈希桶中的位置
size_t count(const K& key)返回哈希桶中关键码为key的键值对的个数

unordered_map的修改操作

函数声明功能介绍
insert向容器中插入键值对
erase删除容器中的键值对
void clear()清空容器中有效元素个数
void swap(unordered_map&)交换两个容器中的元素

unordered_map的桶操作

函数声明功能介绍
size_t bucket_count()const返回哈希桶中桶的总个数
size_t bucket_size(size_t n)const返回n号桶中有效元素的总个数
size_t bucket(const K& key)返回元素key所在的桶号

1.2 unordered_set


参见unordered_set在线文档说明.

2. unordered系列的底层结构

unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。


2.1 哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(logN),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。

如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当向该结构中:

  • 插入元素

根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放。

  • 搜索元素

对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)
 

例如:数据集合{1,7,6,4,5,9};

哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快
 

2.2 哈希冲突

对于两个数据元素的关键字_i和 _j   [(_i)  != (_j)],有_i != _j,但有:Hash(_i) == Hash(_j),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。
 

2.3 哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

常见哈希函数

1. 直接定址法--(常用)

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B优点:简单、均匀缺点:需要事先知道关键字的分布情况使用场景:适合查找比较小且连续的情况.

2. 除留余数法--(常用)

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

3. 平方取中法

假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址;再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址

平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况

4. 折叠法

折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。

折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

5. 随机数法

选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。通常应用于关键字长度不等时采用此法

6. 数学分析法

设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。

假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是 相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现 冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法。

数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况.

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突
 

2.4 哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列


2.4.1 闭散列
 

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢

1. 线性探测

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

插入

  • 通过哈希函数获取待插入元素在哈希表中的位置
  • 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素

删除

采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

线性探测的实现
 

template<class K, class V>
class HashTable
{
	struct Elem
	{
		pair<K, V> _val;
		State _state;
	};
public:
	HashTable(size_t capacity = 3)
		: _ht(capacity), _size(0)
	{
		for (size_t i = 0; i < capacity; ++i)
			_ht[i]._state = EMPTY;
	}
	bool Insert(const pair<K, V>& val)
	{
		// 检测哈希表底层空间是否充足
		// _CheckCapacity();
		size_t hashAddr = HashFunc(key);
		// size_t startAddr = hashAddr;
		while (_ht[hashAddr]._state != EMPTY)
		{
			if (_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first
				== key)
				return false;
			hashAddr++;
			if (hashAddr == _ht.capacity())
				hashAddr = 0;

			// 转一圈也没有找到,注意:动态哈希表,该种情况可以不用考虑,哈希表中元
			//素个数到达一定的数量,哈希冲突概率会增大,需要扩容来降低哈希冲突,因此哈希表中元素是
			//不会存满的
		}
		// 插入元素
		_ht[hashAddr]._state = EXIST;
		_ht[hashAddr]._val = val;
		_size++;
		return true;
	}
	int Find(const K& key) {
		size_t hashAddr = HashFunc(key);
		while (_ht[hashAddr]._state != EMPTY)
		{
			if (_ht[hashAddr]._state == EXIST && _ht[hashAddr]._val.first
				== key)
				return hashAddr;
			hashAddr++;
		}
		return hashAddr;
	}
	bool Erase(const K& key)
	{
		int index = Find(key);
		if (-1 != index)
		{
			_ht[index]._state = DELETE;
			_size++;
			return true;
		}
		return false;
	}
	size_t Size()const;
	bool Empty() const;
	void Swap(HashTable<K, V, HF>& ht);
private:
	size_t HashFunc(const K& key)
	{
		return key % _ht.capacity();
	}
private:
	vector<Elem> _ht;
	size_t _size;
};

哈希表什么情况下进行扩容?如何扩容?
散列表的载荷因子定义为: =填入表中的元素个数/散列表的长度

a是散列表装满程度的标志因子。由于表长是定值,a与“填入表中的元素个数”成正比,所以,a越大,表明填入表中的元素越多,产生冲突的可能性就越大;反之,a越小,标明填入表中的元素越少,产生冲突的可能性就越小。实际上,散列表的平均查找长度是载荷因子a的函数,只是不同处理冲突的方法有不同的函数。

对于开放定址法,荷载因子是特别重要因素,应严格限制在0.7-0.8以下。超过0.8,查表时的CPU缓存不命中(cachemissing)按照指数曲线上升。因此,一些采用开放定址法的hash库,如Java的系统库限制了荷载因子为0.75,超过此值将resize散列表。

线性探测优点:实现非常简单,

线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。

2. 二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,
 

研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。
因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。
 

2.4.2 开散列

1. 开散列概念

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。
2. 开散列实现
 

template<class k>
struct Hashfunc
{
	size_t operator()(const k& _kv)
	{

		return (size_t)_kv;
	}
};

template<>
struct Hashfunc<string>
{
	size_t operator()(const string& _kv)
	{
		size_t a = 0;
		for (auto e : _kv)
		{
			a += e;
			a *= 31;
		}
		return a;
	}
};

namespace bit
{

	template<class T>
	struct HashNode
	{
		T _kv;
		HashNode<T>* _next;



		HashNode(const T& kv)
			: _kv(kv)
			,_next(nullptr)
		{ }
	};

	template<class k, class T, class KeyofT, class Hash>
	class HashTable;

	template<class k, class T, class ref, class ptr, class KeyofT, class Hash>
	class IteratorHash
	{
		typedef HashNode<T> Node;
		typedef IteratorHash<k, T, ref, ptr, KeyofT, Hash> self;

		Node* _node;
		const HashTable<k, T, KeyofT, Hash>* _tbptr;
	public:
		IteratorHash(Node* node, const HashTable<k, T, KeyofT, Hash>* tbptr)
			:_node(node)
			,_tbptr(tbptr)
		{ }


		ref operator*()
		{
			return _node->_kv;
		}

		ptr operator->()
		{
			return &_node->_kv;
		}

		bool operator!=(self& s)
		{
			return s._node != _node;
		}

		self& operator++()
		{
			if (_node->_next != nullptr)
			{
				_node = _node->_next;
			}
			else
			{
				KeyofT kot;
				Hash ht;
				size_t hashi = ht(kot(_node->_kv)) % _tbptr->_tables.size();
				hashi++;
				while (hashi < _tbptr->_tables.size() && _tbptr->_tables[hashi] == nullptr)
				{
					hashi++;
				}
				if (hashi == _tbptr->_tables.size())
				{
					_node = nullptr;
				}
				else
				{
					_node = _tbptr->_tables[hashi];
				}
			}
			return *this;
		}

	};


	template<class k, class T, class KeyofT, class Hash>
	class HashTable
	{
		typedef HashNode<T> Node;
	public:
		template<class k, class T, class ref, class ptr,class KeyofT, class Hash>
		friend class IteratorHash;
		typedef IteratorHash<k, T, T&, T*, KeyofT, Hash> Iterator;
		typedef IteratorHash<k, T, const T&, const T*, KeyofT, Hash> ConstIterator;

		HashTable()
		{
			_tables.resize(10, nullptr);
		}

		~HashTable()
		{
			for (size_t i = 0; i < _tables.size(); i++)
			{
				while (_tables[i])
				{
					Node* root = _tables[i]->_next;
					delete _tables[i];
					_tables[i] = root;
				}
				_tables[i] = nullptr;
			}
		}

		Iterator Begin()
		{
			if (_n == 0) return Iterator(nullptr, this);
			else
			{
				int i = 0;
				while (_tables[i] == nullptr)
				{
					i++;
				}
				return Iterator(_tables[i], this);
			}
		}

		ConstIterator Begin()const
		{
			if (_n == 0) return ConstIterator(nullptr, this);
			else
			{
				int i = 0;
				while (_tables[i] == nullptr)
				{
					i++;
				}
				return ConstIterator(_tables[i], this);
			}
		}

		Iterator End()
		{
			return Iterator(nullptr, this);
		}		
		
		ConstIterator End()const
		{
			return ConstIterator(nullptr, this);
		}

		pair<Iterator, bool> Insert(const T& kv)
		{
			Hash hot;
			KeyofT kot;
			if (_n == _tables.size())
			{
				vector<Node*> _newtables(_tables.size() * 2, nullptr);
				for (size_t i = 0; i < _tables.size(); i++)
				{
					while(_tables[i])
					{
						Node* root = _tables[i]->_next;
						int hashi = hot(kot(_tables[i]->_kv)) % (_tables.size()*2);
						_tables[i]->_next = _newtables[hashi];
						_newtables[hashi] = _tables[i];
						_tables[i] = root;
					}
				}
				_tables.swap(_newtables);
			}
			int hashi = hot(kot(kv)) % _tables.size();
			Node* root = _tables[hashi];
			_tables[hashi] = new Node(kv);
			_tables[hashi]->_next = root;
			_n++;
			return { Iterator(_tables[hashi], this), true};
		}

		Iterator Find(const k& key)
		{
			Hash hot;
			KeyofT kot;
			int hashi = hot(key) % _tables.size();
			Node* root = _tables[hashi];
			while (root)
			{
				if (kot(root->_kv) == key)
				{
					return Iterator(root, this);
				}
				root = root->_next;
			}
			return Iterator(nullptr, this);
		}

		bool Erase(const k& key)
		{
			Hash hot;
			KeyofT kot;
			int hashi = hot(key) % _tables.size();
			Node* root = _tables[hashi];
			Node* prev = nullptr;
			while (root)
			{
				if (kot(root->_kv) == key)
				{
					if (prev == nullptr)
					{
						_tables[hashi] = root->_next;
					}
					else
					{
						prev->_next = root->_next;
					}
					delete root;
					_n--;
					return true;
				}
				prev = root;
				root = root->_next;
			}
			return false;
		}


	private:
		vector<Node*> _tables;
		size_t _n = 0;
	};
}

3. 开散列增容

桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容,那该条件怎么确认呢?开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。

5. 开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上:

由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间

感谢大家的观看

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值