Floyd判圈算法

本文详细介绍了Floyd判圈算法,包括如何使用快慢指针判断链表是否存在环,如何计算环的长度,以及如何找到环的起始点。并通过LeetCode287问题为例,展示了算法的实际应用。
摘要由CSDN通过智能技术生成

目录

1.概念以及用途

 2.具体解决代码以及逻辑推理

(1)判断链表是否有环

(2)判断环的长度

(3)判断环的起始点

3.例题


1.概念以及用途

Floyd判圈算法,又被称之为龟兔赛跑算法(为什么叫龟兔赛跑呢?是因为这个算法里面用到了一个快指针和一个慢指针,就犹如那个乌龟和兔子一样,因此也被称之为龟兔赛跑算法),常用于解决以下问题

  • 判断链表是否有环
  • 计算环的长度
  • 寻找环的起点

 2.具体解决代码以及逻辑推理

(1)判断链表是否有环

我们可以设置一个快指针和一个慢指针,快指针每次走两个位置,慢指针每次走一个位置,然后分情况

  • 如果没有环,那么快指针先到null
  • 如果有环,那么fast==slow
  • 当然还有一个细节,就是两个指针的位置不同,若起始指针为head,那么,slow=head,fast=head.next;
bool ifrool(Node head) 
{
    if (head == null) 
    {
        return false;
    }

    Node slow = head;
    Node fast = head.next;
    
    while (slow != fast && fast != null && fast.next != null)  
    {
        slow = slow.next;
        fast = fast.next.next;
    }
    return slow == fast;
}

(2)判断环的长度

当快慢指针相遇时,就已经说明了,这个是存在环的,然后就可以用另外一个flag指针让其一步一步移动,直到再次移动到这个相遇点,这个就可以求出环的长度

int length(Node head) 
{
        if (head == null) 
        {
            return 0;
        }

        Node slow = head;
        Node fast = head.next;

        while (slow != fast && fast != null && fast.next != null) 
        {
            slow = slow.next;
            fast = fast.next.next;
        }
        

        if (slow == fast) 
        {
            int num = 1;
            Node temp = slow.next;
            while (temp != slow) 
            {
                temp = temp.next;
                num++;
            }
            return num;
        }
        return 0;
    }

(3)判断环的起始点

这个涉及到逻辑的推理了

我们首先假设,起点进入环的长度为a,环的长度为b,慢指针的速度为1,快指针的速度为2

然后我们就可以分析出,如果慢指针走了s的话,那么快指针则走了2s,那么我们就可以推出s=nb

然后我们将其中一个指针放在起点,这两个指针以相同速度走,那么一定会在起点首次相遇 (这个是结论)

3.例题

LeetCode287寻找重复数

#include<bits/stdc++.h>
using namespace std;

int n;
int a[105];
int fast, slow;

int main()
{
    cin >> n;
    for (int i = 0; i <= n; i++)
        cin >> a[i];

    fast = a[0];
    slow = a[0];
    do
    {
        fast = a[a[fast]];
        slow = a[slow];
    } while (fast != slow);

    fast = a[0];
    while (fast != slow)
    {
        fast = a[fast];
        slow = a[slow];
    }

    cout << fast  << endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值