这篇博客也是拖了好久了,大概在三个月之前就听学长讲过ST表,但是现在才来写下这篇博客,也是话不多说,进入今天的快乐学习
概念:
ST表(Sparse Table,稀疏表)是一种用于高效处理区间查询的数据结构。它可以在O(1)的时间复杂度内回答某一区间的最值查询(最小值、最大值等)。ST表用的是倍增思想,通过预处理的方式来快速计算出各个区间的最值。
应用场景:
ST表可用于解决RMQ问题,即区间最值问题(比如说求出一个区间的最大值或者一个区间的最小值)
和线段树的关系:
和线段树一样,都可以进行一个区间最值的查询,但是缺点是只能进行查询,而不能进行区间的维护(即修改操作)
因此我们在只是处理查询问题的时候可以用到ST表来优化代码(因为线段树的代码实在是太长了)
模版:
预处理模版
//dp[i][j]表示的是以i为起点,长度为2^j的区间的最值
//外层循环遍历的是长度的指数,内层循环遍历的是起点
for(int j=1;j<20;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
}
查询模版
//maxn是统计给定区间的最值
//k是用来判断区间的长度
//l,r是给定的区间范围
for(int i=1;i<=m;i++)
{
cin>>l>>r;
int k=log2(r-l+1);
maxn=max(dp[l][k],dp[r-(1<<k)+1][k]);
}
P3865 【模板】ST 表
标准的st表,要求每个区间的最大值,,因此我们的dp数组表示的就是以i为起点,长度为2^j区间最值,直接写代码即可,预处理和查询都按照我上面的模版写即可
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m;
int l,r;
int f[100005][20];
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>f[i][0];
}
for(int j=1;j<=20;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
}
for(int i=1;i<=m;i++)
{
cin>>l>>r;
int k=log2(r-l+1);
cout<<max(f[l][k],f[r-(1<<k)+1][k])<<"\n";
}
return 0;
}
P2880 [USACO07JAN] Balanced Lineup G
这题也只不过是稍微有些变形罢了,我们用两个数组,一个统计区间最大值,一个统计区间最小值即可,然后处理每个给定区间的时候,都是区间的最大值,去减去区间的最小值,也是没有什么难度
//第二次做,上一世我拿的线段树做的,这一次我一定要夺回我的全部
//ST表,启动!
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m;
int x;
int f_max[50004][20];
int f_min[50004][20];
int l,r;
signed main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>x;
f_max[i][0]=f_min[i][0]=x;
}
for(int j=1;j<=20;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
f_max[i][j]=max(f_max[i][j-1],f_max[i+(1<<(j-1))][j-1]);
f_min[i][j]=min(f_min[i][j-1],f_min[i+(1<<(j-1))][j-1]);
}
}
while(m--)
{
cin>>l>>r;
int k=log2(r-l+1);
cout<<max(f_max[l][k],f_max[r-(1<<k)+1][k])-min(f_min[l][k],f_min[r-(1<<k)+1][k])<<"\n";
}
return 0;
}
P2251 质量检测
也是只不过稍微有些变形罢了,之前都是给定区间,这次是直接给定区间的长度,因此我们需要先判断,其长度的log级别,然后每次取统计区间的最小值即可
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m;
int f[1000005][25];
signed main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>f[i][0];
}
for(int j=1;j<=24;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
f[i][j]=min(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
}
for(int i=1;i+m-1<=n;i++)
{
int l=i,r=i+m-1;
int k=log2(r-l+1);
cout<<min(f[i][k],f[r-(1<<k)+1][k])<<"\n";
}
return 0;
}
总结:
学习ST表主要是为了倍增思想,我们要了解的重点是倍增思想