Codeforces Round 991 (Div. 3)题解

先随随便便写一点东西吧,毕竟只是一场div3

A. Line Breaks

思路:一道很简单的模拟题吧,就是遍历一遍,当大于x的时候就break,然后前面那个就是找到的前x个字的总长度不超过m

#include<bits/stdc++.h>
using namespace std;
#define int long long
int t;
int n,m;
int a[200005];
string s[200005];
void solve()
{
	cin>>n>>m;
	int cnt=0;
	for(int i=1;i<=n;i++)
	{
		cin>>s[i];
	}
	for(int i=1;i<=n;i++)
	{
		if(m>=s[i].size())
		{
			m-=s[i].size();
			cnt++;
		}
		else
		{
			break;
		}
	}
	cout<<cnt<<"\n";
}

signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
	cin>>t;
	while(t--)
	solve();
	return 0;
}

 B. Transfusion

思路:一眼分奇偶,直接去判断整个奇偶数位的和能否被整数,以及两者整除的值是否相等,如果相等就是YES,否则就是NO

#include<bits/stdc++.h>
using namespace std;
#define int long long
int t;
int n,k;
int a[200005];

void solve()
{
	cin>>n;
	int sum=0;
	int sum1=0;
	int sum2=0;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		sum+=a[i];
		if(i%2==1)
		sum1+=a[i];
		else
		sum2+=a[i];
	}
	if(sum%n==0&&sum1/((n+1)/2)==sum2/(n/2))
	{
		cout<<"YES\n";
	}
	else
	{
		cout<<"NO\n";
	}
}

signed main()
{
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
	cin>>t;
	while(t--)
	solve();
	return 0;
}

 C. Uninteresting Number

思路:首先我们发现题目上有一个重要的信息, 平方后还是一位数,那就说明,只有2或3的平方才能改变结果。能够被9整除的数都有一个特征,各位数之和加起来是9的倍数,因此我们可以先统计2和3的数量,然后对其2每次平方改变2,3每次平方改变6,那么我们完全可以统计其改变量取模9的可能性,然后对其暴力双循环,找到是否能够满足累加之前的余数能够整除9

#include<bits/stdc++.h>  
using namespace std;  
#define int long long  

int t;  
int n, k;  
int a[200005];
string s;  

void solve() {  
    cin >> s;  
    int sum = 0;  
    int cnt2 = 0, cnt3 = 0; 

    for (char c : s) 
	{  
        sum += c - '0';  
        if (c == '2') 
		cnt2++;  
        if (c == '3') 
		cnt3++;  
    }  
    if (sum % 9 == 0) 
	{  
        cout << "YES\n";  
        return;  
    }  
    int mod = sum % 9;  
    
    vector<int> v3, v2;  
    int flag = 0;  
    v2.push_back(0);
    v3.push_back(0);
    for (int i = 1; i <= cnt3; i++) {  
        flag += 6;  
        flag %= 9;  
        v3.push_back(flag);  
    }  

    flag = 0; 
   
    for (int i = 1; i <= cnt2; i++) {  
        flag += 2;  
        flag %= 9;  
        v2.push_back(flag);  
    }  

    for (auto i : v2) {  
        for (auto j : v3) {  
            if ((i + j)%9 == 9 - mod) 
			{  
                cout << "YES\n";  
                return;  
            }  
        }  
    }  
    cout << "NO\n";  
}  

signed main() {  
    ios::sync_with_stdio(0);   
    cin.tie(0);   
    cout.tie(0);  
    cin >> t; 
    while (t--) solve();  
    return 0;  
}

D. Digital string maximization

思路:这题需要从题目中推出一个重要的信息,我们每个位置的第一位,最多从其往后后九位决定,因此其实也就是模拟一遍即可时间复杂度为O(n)

我们往后走九位找到最大的那个,然后交换即可

#include<bits/stdc++.h>
using namespace std;

void solve()
{
	string s;
	cin>>s;
	int pos=0;
	int flag=0;
	int n=s.size();
	for(int i=0;i<n;i++)
	{
		flag=s[i]-'0';
		pos=i;
		for(int j=i+1;j<=min(n-1,i+9);j++)
		{
			if(s[j]-'0'-(j-i)>flag)
			{
				flag=s[j]-'0'-(j-i);
				pos=j;
			}
		}
		char tmp=flag+'0';
		for(int j=pos;j>=i+1;j--)
		{
			swap(s[j],s[j-1]);
		}
		s[i]=tmp;
	}
	cout<<s<<"\n";
}

signed main()
{
	int t;
	cin>>t;
	while(t--)
	solve();
	return 0;
}

 E. Three Strings

思路:一个很简单的动态规划,我们用一个dp[i][j]表示表示a字符串用i个,j字符串用j个组成c的最大值,然后我们的dp数组也很简单

当我们的a[i+1]=c[i+j+1]的时候

dp[i+1][j]=max(dp[i+1][j],dp[i][j]+1)

同理b[j+1]=c[i+j+1]的时候

dp[i][j+1]=max(dp[i][j+1],dp[i][j]+1)

#include<bits/stdc++.h>
using namespace std;
#define int long long
int t;
string a,b,c;
int f[1005][1005];
void solve()
{
	memset(f,0,sizeof(f));
	cin>>a>>b>>c;
	int lena=a.size();
	int lenb=b.size();
	int lenc=c.size();
	a=' '+a;
	b=' '+b;
	c=' '+c;
	for(int i=0;i<=lena;i++)
	{
		for(int j=0;j<=lenb;j++)
		{
			f[i+1][j]=max(f[i+1][j],f[i][j]);
			f[i][j+1]=max(f[i][j+1],f[i][j]);
			if(a[i+1]==c[i+j+1])
			{
				f[i+1][j]=max(f[i+1][j],f[i][j]+1);
			}
			if(b[j+1]==c[i+j+1])
			{
				f[i][j+1]=max(f[i][j+1],f[i][j]+1);
			}
		}
	}
	cout<<lenc-f[lena][lenb]<<"\n";
}

signed main()
{
    ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin>>t;
	while(t--)
	solve();
	return 0;
}

 F. Maximum modulo equality

思路:一个区间内取模m等于同一个数,那这个区间内的数是一个等差数列,我们只要找到这个区间内的最大公因数即可。

耶?区间内的最大公因数?我记得你是不可变的静态数组对吧?RMQ问题,直接秒了

ST表启动

#include<bits/stdc++.h>
using namespace std;
#define int long long
int t;
int n,q;
int a[200005];
int f[200005][20];
int l,r;
int gcd(int a,int b)
{
	if(b==0)
	return a;
	return gcd(b,a%b);
}
void solve()
{
	cin>>n>>q;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
	}
	for(int i=1;i<n;i++)
	{
		f[i][0]=abs(a[i+1]-a[i]);
	}
	for(int j=1;j<20;j++)
    {
    	for(int i=1;i+(1<<j)-1<=n-1;i++)
	    {
		    f[i][j]=gcd(f[i][j-1],f[i+(1<<(j-1))][j-1]);
	    }
    } 
    
	for(int i=1;i<=q;i++)
	{
		cin>>l>>r;
		if(l==r)
		{
			cout<<"0 ";
		}
		else
		{
			r--;
			int k=log2(r-l+1);
	        cout<<gcd(f[l][k],f[r-(1<<k)+1][k])<<" ";
		}
	}
	cout<<"\n";
}
signed main()
{
    ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin>>t;
	while(t--)
	solve();
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值