初识pandas库与缺失数据的补全
按照示例代码的要求,去尝试补全信贷数据集中的数值型缺失值
- 打开数据(csv文件、excel文件)
- 查看数据(尺寸信息、查看列名等方法)
- 查看空值
- 众数、中位数填补空值
- 利用循环补全所有列的空值
完成后在py文件中独立完成一遍,并且利用debugger工具来查看属性(不借助函数显式查看)----养成利用debugger工具的习惯
数据的读取和查看
# 读取数据
import pandas as pd
data = pd.read_csv(r'data.csv')
type(data) # 类
data.isnull() # 布尔矩阵显示缺失值,这个方法返回一个布尔矩阵,也是dataframe对象,其中True表示对应位置的值是缺失值,False表示对应位置的值不是缺失值。
data.head(15) #读取前15行
#用openpyxl库读取xlxs文件
data2 =pd.read_excel('data.xlsx')
data2
data2.head(15)
数据信息的查看
data.info() # 列名、非空值、数据类型
data.shape # (行数, 列数) data的属性
data.columns # 所有列名 data的属性
data.describe() # 数值列的基本统计量
# dtype是data type的缩写,用于描述数据类型。后续会频繁借助这个方法来查看某一列数据的属性
data.dtypes # 各列数据类型
data.info()
data["Annual Income"].dtype # 查看某一列的数据类型
data.isnull()
type(data.isnull()) # 布尔矩阵显示缺失值,这个方法返回一个布尔矩阵,其中True表示对应位置的值是缺失值,False表示对应位置的值不是缺失值。
data["Annual Income"].isnull().sum() #求单列的和(单列缺失数据个数)
data.isnull().sum() # 每列缺失值计数,sum方法为求每一列的和
缺失值的填补
使用中位数进行填补
data['Annual Income']
type(data['Annual Income'])
# dataframe里单独的一列是series
# 计算 'Annual Income' 列的中位数(会自动忽略 NaN 值)
median_income = data['Annual Income'].median()
median_income
# 使用计算出的中位数填补该列的 NaN 值
# inplace=True 参数表示直接在原 DataFrame 上进行修改
# 如果不设置该参数,fillna() 方法会返回一个新的 DataFrame,原 DataFrame 不会被修改
data['Annual Income'].fillna(median_income, inplace=True)
# 检查下是否有缺失值
data['Annual Income'].isnull().sum()
使用众数进行填补
# 使用众数填充缺失值
import pandas as pd
data = pd.read_csv('data.csv') #需要重新读取一遍数据(实际进行填补时与中位数选其一)
mode = data['Annual Income'].mode()
# mode() 会返回数据中出现频率最高的所有值,如果频次相同,会返回最多每个值。
mode
# 这里返回了4个最多频次的值,我们一般保留第一个
mode = mode[0]
# 众数填补
#data['Annual Income'].fillna(mode, inplace=True)
data['Annual Income']=data['Annual Income'].fillna(mode)
# 检查下是否有缺失值
data['Annual Income'].isnull().sum()
填补所有的数据值缺失值
data.columns
type(data.columns)
# tolist方法,将numpy数组和pandas对象转换成list
import numpy as np
a =np.array([1,2,3])
a.tolist()
c = data.columns.tolist()
type(c)
# 循环遍历c这个列表中的每一列
for i in c:
# 找到为数值型的列
if data[i].dtype != 'object': # 找到为数值型的列
if data[i].isnull().sum() > 0: # 找到存在缺失值的列
#计算该列的均值
mean_value = data[i].mean()
#用均值填充缺失值
#data[i].fillna(mean_value, inplace=True)
data[i]=data[i].fillna(mean_value)
data.isnull().sum()