题目:
小明这些天一直在思考这样一个奇怪而有趣的问题:
在 1 ~ 𝑁N 的某个全排列中有多少个连号区间呢?
这里所说的连号区间的定义是:
如果区间 [𝐿,𝑅][L,R] 里的所有元素(即此排列的第 𝐿L 个到第 𝑅R 个元素)递增排序后能得到一个长度为 𝑅−𝐿+1R−L+1 的"连续"数列,则称这个区间连号区间。
当 𝑁N 很小的时候,小明可以很快地算出答案,但是当 𝑁N 变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
输入描述
第一行是一个正整数 𝑁(1≤𝑁≤50×104)N(1≤N≤50×104), 表示全排列的规模。
第二行是 𝑁N 个不同的数字 𝑃𝑖 (1≤𝑃𝑖≤𝑁)Pi (1≤Pi≤N),表示这 𝑁N 个数字的某一全排列。
输出描述
输出一个整数,表示不同连号区间的数目。
输入输出样例
示例
输入
4
3 2 4 1
输出
7
解析:
1、连续区间判断
1)、相差为1
2)、max-min=k-1
- 找到区间中的最大值
max
和最小值min
。 - 如果区间内有 ( k ) 个数字,那么连续数列的最大值和最小值之间的差应该是 ( k - 1 )。
- 同时,你还要检查区间内是否有重复的数字。如果有重复的数字,说明它不是连续的。
具体步骤:
- 计算区间内的最大值
max
和最小值min
。 - 如果 ( \text{max} - \text{min} = \text{区间大小} - 1 ) 且没有重复的数字,则说明这个区间是连续的。
代码:
代码1:80%通过,运行超时--求连续序列,max-min=k-1
#include <iostream>
#include <deque>
#include <unordered_set>
using namespace std;
const int N = 5e5 + 10;
int p[N];
bool check(int n, int m) {
int length = m - n + 1;
int min_val = p[n], max_val = p[n];
unordered_set<int> unique_elements;
// 计算区间的最小值、最大值,并检查是否有重复元素
for (int i = n; i <= m; i++) {
if (unique_elements.count(p[i])) {
return false; // 如果有重复元素,直接返回 false
}
unique_elements.insert(p[i]);
min_val = min(min_val, p[i]);
max_val = max(max_val, p[i]);
}
// 判断最大值和最小值之差是否等于区间长度 - 1
return (max_val - min_val == length - 1);
}
int main() {
int n, c = 0;
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> p[i];
}
// 检查所有区间
for (int i = 1; i <= n; i++) {
for (int j = i; j <= n; j++) {
if (check(i, j)) {
c++;
}
}
}
cout << c << endl;
return 0;
}
代码2:80%,暴力运行超时---求连续序列,p[i]!=p[i]+1,flage=0;
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e4+10;
int a[N];
int backup[N];
int main()
{
ios::sync_with_stdio(0) , cin.tie(0);
int n ;
int res = 0;
cin>>n;
for (int i = 0; i < n; i ++ ) cin>>a[i];
memcpy(backup, a, sizeof a);
for (int i = 0; i < n; i ++ ){
for (int j = i; j < n; j ++ ){
memcpy(a, backup, sizeof backup);
sort(a+i , a+j+1);
bool flag = true;
for (int k = i+1; k <= j; k ++ ){
if(a[k]!=a[k-1]+1){
flag = false;
break;
}
}
if(flag) res++;
}
}
cout<<res;
return 0;
}
代码1,2都是用的三重循环,接下来进行优化
代码3:二重循环100%通过--max-min=k-1
#include <bits/stdc++.h>
using namespace std;
const int N = 5e5 + 10, INF = 1e8;
int n, res;
int a[N];
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
for (int i = 0; i < n; i++)
{
int maxv = -INF, minv = INF;
for (int j = i; j < n; j++)
{
maxv = max(maxv, a[j]);
minv = min(minv, a[j]);
if (maxv - minv == j - i) res++;
}
}
printf("%d\n", res);
return 0;
}
直接每一个i-j,j++的区间判断最值就行,因为始终是这个序列,只是往后面添加了元素了,避免了重复查询最值
代码4:双端队列--求最值
和代码3类似,只不过用到了队列的思想
#include <iostream>
#include <deque>
#include <unordered_set>
using namespace std;
const int N = 5e5 + 10;
int p[N];
int main() {
int n, c = 0;
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> p[i];
}
// 双端队列维护区间内的最大值和最小值
deque<int> max_deque, min_deque;
unordered_set<int> current_window_elements;
for (int i = 1; i <= n; i++) {
max_deque.clear();
min_deque.clear();
current_window_elements.clear();
// 从 i 开始扩展窗口
for (int j = i; j <= n; j++) {
// 如果新元素已经在窗口内,跳出
if (current_window_elements.count(p[j])) {
break;
}
// 更新哈希集合
current_window_elements.insert(p[j]);
// 更新最大值队列
while (!max_deque.empty() && p[max_deque.back()] <= p[j]) {
max_deque.pop_back();
}
max_deque.push_back(j);
// 更新最小值队列
while (!min_deque.empty() && p[min_deque.back()] >= p[j]) {
min_deque.pop_back();
}
min_deque.push_back(j);
// 计算当前窗口的最小值和最大值
int min_val = p[min_deque.front()];
int max_val = p[max_deque.front()];
// 检查区间的最大值 - 最小值是否等于区间长度 - 1
if (max_val - min_val == j - i) {
c++;
}
}
}
cout << c << endl;
return 0;
}