动态规划——(小demo:在数组中找出最大值出现的次数(时间复杂度O(N)))最长递增子序列的个数

文章介绍了如何在O(N)的时间复杂度内,利用贪心策略和动态规划求解给定数组中最长递增子序列的长度及元素出现次数,通过维护两个dp表来实现子序列长度和个数的计算。
摘要由CSDN通过智能技术生成

             在讲解前,先说一个小贪心策略,那就是在一个数组中用O(N)来找出最大值出现的次数

       在nums[i]==maxval时就可以在出现的次数上自增1,如果遇到nums[i]>maxval那么就要更新最大值 maxval=nums[i],和重新定义出现的次数count=1;

         在最开始,我只是建立一个dp表,并不能完成后面对最长的字符串的计数,也没办法知道他到底有多长。那么就要选择用两个dp表来实现记录子序列的长度和个数

         那么在构建状态转移表达式就运用上那个小贪心算法,在寻找len[i]的最大长度时,顺便对count[i]进行次数的更新。

class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        int n=nums.size();
        vector<int> len(n,1),count(n,1);

        int retlen=1,retcount=1;
        for(int i=1;i<n;i++)
        {
            for(int j=0;j<i;j++)
            {
                if(nums[j]<nums[i])
                {
                    if(len[j]+1==len[i]) count[i]+=count[j];
                    else if(len[j]+1>len[i]) len[i]=len[j]+1,count[i]=count[j];
                }
            }
            if(retlen==len[i])
            retcount+=count[i];
            else if(retlen<len[i])
            retlen=len[i],retcount=count[i];
        }
        return retcount;
    }
};

并且这个小贪心不只是在更新最长字串的次数时运用,还要再返回最长的子序列中所出现的次数在外层for()循环中运用。

如有不足,欢迎留言~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值