在讲解前,先说一个小贪心策略,那就是在一个数组中用O(N)来找出最大值出现的次数
在nums[i]==maxval时就可以在出现的次数上自增1,如果遇到nums[i]>maxval那么就要更新最大值 maxval=nums[i],和重新定义出现的次数count=1;
在最开始,我只是建立一个dp表,并不能完成后面对最长的字符串的计数,也没办法知道他到底有多长。那么就要选择用两个dp表来实现记录子序列的长度和个数
那么在构建状态转移表达式就运用上那个小贪心算法,在寻找len[i]的最大长度时,顺便对count[i]进行次数的更新。
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n=nums.size();
vector<int> len(n,1),count(n,1);
int retlen=1,retcount=1;
for(int i=1;i<n;i++)
{
for(int j=0;j<i;j++)
{
if(nums[j]<nums[i])
{
if(len[j]+1==len[i]) count[i]+=count[j];
else if(len[j]+1>len[i]) len[i]=len[j]+1,count[i]=count[j];
}
}
if(retlen==len[i])
retcount+=count[i];
else if(retlen<len[i])
retlen=len[i],retcount=count[i];
}
return retcount;
}
};
并且这个小贪心不只是在更新最长字串的次数时运用,还要再返回最长的子序列中所出现的次数在外层for()循环中运用。
如有不足,欢迎留言~