通过sklearn机器学习库来实现传统分类算法的案例解析

分类算法是机器学习中的一类监督学习方法,其目的是根据已知的输入数据和它们对应的标签(类别),训练出一个模型,这个模型能够对未知数据进行分类。以下是一些常见的分类算法:
1. 逻辑回归(Logistic Regression)
逻辑回归是一种广泛使用的分类算法,尽管它的名字中有“回归”,但它实际上用于分类问题。它通过使用逻辑函数(如sigmoid函数)将线性回归的输出映射到0和1之间,从而预测概率。
2. 决策树(Decision Trees)
决策树通过一系列的测试来对数据进行分类。每个测试涉及数据的一个属性,并且有一个或多个分支对应于测试的每个可能结果。决策树易于理解,但容易过拟合。
3. 随机森林(Random Forests)
随机森林是一个集成算法,它通过组合多个决策树来提高分类的准确率。每棵树都是在数据的不同子集上训练的,并且通过投票或平均预测来合并每棵树的预测结果。
4. 支持向量机(Support Vector Machines, SVM)
SVM是一种强大的分类器,它通过找到最优的分割超平面来将不同类别的数据分开。SVM试图最大化类别之间的间隔,使其对噪声和异常值具有鲁棒性。
5. 朴素贝叶斯(Naive Bayes)
朴素贝叶斯基于贝叶斯定理,假设特征之间相互独立。它简单高效,特别是在处理文本分类问题时非常有效。
6. K-最近邻(K-Nearest Neighbors, KNN)
KNN是一种基于实例的学习方法,它通过查找与新数据点最接近的k个训练样本,并根据这些邻居的标签来进行分类。
7. 神经网络(Neural Networks)
神经网络是一系列相互连接的节点(或“神经元”),它们模拟人脑的处理方式。多层感知器(MLP)是一种常见的神经网络结构,用于分类任务,也属于深度学习范畴。
8. 梯度提升机(Gradient Boosting Machines, GBM)
梯度提升是一种强大的集成学习技术,它通过逐步构建模型来最小化损失函数,通常使用决策树作为基础模型。

接下来我将利用一个经典的可供学习研究的数据集,通过sklearn机器学习库来实现传统分类算法,比如K近邻算法,朴素贝叶斯算法,决策树算法,逻辑回归算法,支持向量机算法。

一:数据预处理

Step1:数据背景介绍

       此数据分析的目的是基于鸢尾花的属性数据,如两种鸢尾花萼片、花瓣的长度和宽度平均值,从而建立一个分类模型对根据这些属性数据鸢尾花种类进行分类。

原始数据包括两种鸢尾花,每种有 50 个样本,以及每个样本的一些

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值