第十五届蓝桥杯大赛软件赛国赛C/C++ 大学 B 组

合法密码

问题描述

小蓝正在开发自己的 OJ 网站。他要求网站用户的密码必须符合以下条件:

  1. 长度大于等于 88 个字符,小于等于 1616 个字符。
  2. 必须包含至少 11 个数字字符和至少 11 个符号字符。

例如 **lanqiao2024!+-*/06018((>w<))8** 都是合法的密码。 而 **12345678##\*\*##\*\*abc0!#lanqiao20240601!?** 都不是合法的密码。

请你计算以下的字符串中,有多少个子串可以当作合法密码?只要两个子串的开头字符和末尾字符在原串中的位置不同,就算作不同的子串。

字符串为:

kfdhtshmrw4nxg#f44ehlbn33ccto#mwfn2waebry#3qd1ubwyhcyuavuajb#vyecsycuzsmwp31ipzah#catatja3kaqbcss2th

code:

 遍历一遍。

#include<bits/stdc++.h>
using namespace std;
int ans=0;//400
string s="kfdhtshmrw4nxg#f44ehlbn33ccto#mwfn2waebry#3qd1ubwyhcyuavuajb#vyecsycuzsmwp31ipzah#catatja3kaqbcss2th";
bool solve(string str)
{
	int f1=0,f2=0;
	for(int i=0;i<str.size();i++)
	{
		if(str[i]>='0'&&str[i]<='9') f1=1;
		else if(str[i]>='a'&&str[i]<='z'||str[i]>='A'&&str[i]<='Z') continue;
		else f2=1;
	}
	if(f1&&f2) return true;
	else return false;
}
int main()
{
	for(int i=0;i<s.size()-16;i++)
	{
		int j;
		for(j=8;j<=16;j++)
		{
			string ss=s.substr(i,j);
			if(solve(ss))
			{
				ans=ans+16-j+1;
				break;
			}
		}
	}
	cout<<ans;
	return 0;
}

 选数概率

code

转化得公式。

#include<bits/stdc++.h>
using namespace std;

int main()
{
	int s1=517*5;
	int s2=2632;
	int s3=308*5;
	int p=__gcd(s1*s3,__gcd(s2*s1,s2*s3));
	cout<<s1*s3/p<<','<<s1*s2/p<<','<<s2*s3/p;//55,94,56
	return 0;
} 

蚂蚁开会

问题描述

二维平面上有 nn 只蚂蚁,每只蚂蚁有一条线段作为活动范围,第 ii 只蚂蚁的活动范围的两个端点为 (uix,uiy),(vix,viy)(uix​,uiy​),(vix​,viy​)。现在蚂蚁们考虑在这些线段的交点处设置会议中心。为了尽可能节省经费,它们决定只在所有交点为整点的地方设置会议中心,请问需要设置多少个会议中心?

输入格式

输入共 n+1n+1 行。第一行为一个正整数 nn。后面 nn 行,每行 44 个由空格分开的整数表示 uix,uiy,vix,viyuix​,uiy​,vix​,viy​。

输出格式

输出共 11 行,一个整数表示答案。

样例输入

4
0 0 4 4
0 4 4 0
2 0 0 4
2 1 2 3

样例输出

2

样例说明

所有线段之间共有 33 个不同的交点:(0,4),(4,3),(2,2)(0,4),(4,3),(2,2),其中整点有 22 个:(0,4),(2,2)(0,4),(2,2)。

code

记录所有线段经过的点。

#include<bits/stdc++.h>
using namespace std;
int n;
map<pair<int,int>,int>mp;
int ans=0;
int main()
{
	cin>>n;
	for(int i=0;i<n;i++)
	{
		int sx,sy;
		int fx,fy;
		cin>>sx>>sy>>fx>>fy;
		int x=fx-sx;
		int y=fy-sy;
		int p=abs(__gcd(x,y));
		int nx=sx,ny=sy,dx=x/p,dy=y/p;
		while(1)
		{
			mp[{nx,ny}]++;
			nx+=dx;
			ny+=dy;
			if(nx<min(sx,fx)||max(sx,fx)<nx||ny<min(sy,fy)||max(sy,fy)<ny) break;
		}
	}
	for(auto &i:mp)
	{
		if(i.second>=2)ans++;
	}
	cout<<ans;
	return 0;
} 

立定跳远

问题描述

在运动会上,小明从数轴的原点开始向正方向立定跳远。项目设置了 nn 个检查点 a1,a2,...,ana1​,a2​,...,an​ 且 ai≥ai−1>0ai​≥ai−1​>0。小明必须先后跳跃到每个检查点上且只能跳跃到检查点上。同时,小明可以自行再增加 mm 个检查点让自己跳得更轻松。在运动会前,小明制定训练计划让自己单次跳跃的最远距离达到 LL,并且学会一个爆发技能可以在运动会时使用一次,使用时可以在该次跳跃时的最远距离变为 2L2L。小明想知道,LL 的最小值是多少可以完成这个项目?

输入格式

输入共 22 行。第一行为两个正整数 n,mn,m。第二行为 nn 个由空格分开的正整数 a1,a2,...,ana1​,a2​,...,an​。

输出格式

输出共 11 行,一个整数表示答案。

样例输入

5 3
1 3 5 16 21

样例输出

3

样例说明

增加检查点 10,13,1910,13,19,因此每次跳跃距离为 2,2,5,3,3,3,22,2,5,3,3,3,2,在第三次跳跃时使用技能即可。

code:

二分法:逐渐查找到最小得L值,贪心:使用技能相当于多一个检查点。

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 9;
int a[N],n,m;

int check(int x)
{
    int cnt = 0;
    for(int i=1;i<=n;i++) 
    {
        cnt += (a[i] - a[i-1] - 1) / x + 1 - 1;
    }
    return cnt <= m + 1;
}

int main()//贪心 使用技能相当于检查点加一
{
    cin >> n >> m;
    for(int i=1;i<=n;i++) cin >> a[i];
    sort(a+1,a+1+n);
    int l = 0 , r = 1e8+5;
    while(l<r)
    {
        int mid = l + r >> 1;
        if(check(mid)) r = mid;
        else l = mid + 1;
    }
    cout<<l;
    return 0;
}

最小字符串

问题描述

给定一个长度为 NN 且只包含小写字母的字符串 SS,和 MM 个小写字母 c1,c2,...,cMc1​,c2​,...,cM​。现在你要把 MM 个小写字母全部插入到字符串 SS 中,每个小写字母都可以插入到任意位置。请问能得到的字典序最小的字符串是什么?

输入格式

第一行包含两个整数 NN 和 MM。第二行包含一个长度为 NN 的字符串 SS。第三行包含 MM 个小写字母 c1,c2,...,cMc1​,c2​,...,cM​。

输出格式

输出一个长度为 N+MN+M 的字符串代表答案。

样例输入 1

4 3
abbc
cba

样例输出 1

aabbbcc

样例输入 2

7 3
lanqiao
bei

样例输出 2

beilanqiao

code

按序输出即可。

#include<bits/stdc++.h>
using namespace std;
int n,m;
string s,s1;
int main()
{
	cin>>n>>m;
	cin>>s>>s1;
	sort(s1.begin(),s1.end());
	int i=0,j=0;
	while(i<n&&j<m)
	{
		if(s[i]<=s1[j]) cout<<s[i++];
		else cout<<s1[j++];
	}
	while(i<n) cout<<s[i++];
	while(j<m) cout<<s1[j++]; 
	return 0;
}

 数位翻转

问题描述

小明创造了一个函数 f(x)f(x) 用来翻转 xx 的二进制的数位(无前导 00)。比如 f(11)=13f(11)=13,因为 11=(1011)211=(1011)2​,将其左右翻转后,变为 13=(1101)213=(1101)2​;再比如 f(3)=3f(3)=3,f(0)=0f(0)=0,f(2)=f(4)=f(8)=1f(2)=f(4)=f(8)=1 等等。小明随机出了一个长度为 nn 的整数数组 {a1,a2,...,an}{a1​,a2​,...,an​},他想知道,在这个数组中选择最多 mm 个不相交的区间,将这些区间内的数进行二进制数位翻转(将 aiai​ 变为 f(ai)f(ai​))后,整个数组的和最大是多少?

输入格式

输入共 22 行。第一行为两个正整数 n,mn,m。第二行为 nn 个由空格分开的整数 a1,a2,...,ana1​,a2​,...,an​。

输出格式

输出共 11 行,一个整数表示答案。

样例输入 1

5 3
11 12 13 14 15

样例输出 1

67

样例说明 1

只翻转 a1a1​,和为 13+12+13+14+15=6713+12+13+14+15=67。

样例输入 2

6 2
23 8 11 19 16 35

样例输出 2

134

样例说明 2

翻转区间 [a3,a4][a3​,a4​] 和 [a6][a6​],和为 23+8+13+25+16+49=13423+8+13+25+16+49=134。

code

dp

#include<bits/stdc++.h>
using namespace std;
#define ll long long
int n,m;
int a[1010];
int d[1010];
ll dp[1010][1010];///dp[i][j] 表示处理前 i 个数,选择了 j 个不相交区间的最大增益和
ll ans=0;
void solve(int val,int num)
{
	int x=val;
    int y=0;
    while(x>0) 
	{
        int now=x%2;
        x/=2;
        y=y*2+now;
    }
    d[num]=y-val;
}
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		ans+=a[i];
		solve(a[i],i);
	}
	for(int i=1; i<=n; i++) 
	{
        for(int j=1; j<=m; j++) dp[i][j]=max(dp[i][j],dp[i-1][j]);//不选选  复制下来 

        for(int j=1; j<=m; j++) 
		{
            ll sum=0;
            for(int k=i; k>=1; k--) 
			{
                sum+=d[k];
                dp[i][j]=max(dp[i][j],dp[k-1][j-1]+sum);//选
            }
        }
    }
    cout<<ans+dp[n][m]<<endl;
	return 0;
}

跳石头

问题描述

小明正在和朋友们玩跳石头的小游戏,一共有 nn 块石头按 1 到 nn 顺序排成一排,第 ii 块石头上写有正整数权值 cici​ 。

如果某一时刻小明在第 jj 块石头,那么他可以选择跳向第 j+cjj+cj​ 块石头 (前提 j+cj≤nj+cj​≤n )或者跳向第 2j2j 块石头(前提 2j≤n2j≤n ),没有可跳跃的目标时游戏结束。

假如小明选择从第 xx 块石头开始跳跃,如果某块石头有可能被小明经过 ("经过"指存在某一时刻小明在这个石头处),则将这块石头的权值纳入得分集合 SxSx​ ,那么小明从第 xx 块石头开始跳跃的得分为 ∣Sx∣∣Sx​∣ 。

比如如果小明从第 xx 块石头出发,所有可能经过的石头上的权值分别为 5,3,5,2,35,3,5,2,3 ,那么 Sx=5,3,2Sx​=5,3,2 得分为 ∣Sx∣=3∣Sx​∣=3 。小明可以任选一块石头开始跳跃,请求出小明最多能获得的分数。

输入格式

输入共 22 行。

第一行为一个正整数 nn。

第二行为 nn 个由空格分开的正整数 c1,c2,…,cnc1​,c2​,…,cn​。

输出格式

输出共 1 行,一个整数表示答案。

样例输入

5
4 3 5 2 1

样例输出

4

 code

多次dfs找出最多得解

#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m;
int c[40010];
int ans=0;
set<int>se;
void dfs(int x)
{
	ans=max(ans,(int)se.size());
	if(2*x<=n)
	{
		se.insert(c[2*x]);
		dfs(2*x);
	}
	if(x+c[x]<=n)
	{
		se.insert(c[x+c[x]]);
		dfs(x+c[x]);
	}
}
signed main()
{
	ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	cin>>n;
	for(int i=1;i<=n;i++) 
		cin>>c[i];
	for(int i=1;i<=n;i++)
	{
		se.clear();
		se.insert(c[i]);
		dfs(i);
	}
	cout<<ans;
	return 0;
}

最长回文前后缀

code

由题知,只能删一个子串,判断首尾长度后,从左向右/从右向左 各一遍遍历,找到删去子串得最优解。

#include<bits/stdc++.h>
#define int long long 
using namespace std;
int solve(string str)
{
	string s=str;
	int len=0;
	int res=-1;
	int l=0,r=s.size()-1;
	while(l<=r&&s[l]==s[r])
	{
		l++;
		r--;
		len++;
	}
	for(int j=r;j>=l;j--)
	{
		if(s[j]==s[l])
		{
			int ll=l,rr=j;
			int cnt=0;
			while(ll<=rr&&s[rr]==s[ll])
			{
				ll++;
				rr--;
				cnt++;
			}
			res=max(res,cnt);
		}
	}
	return len+res;
}
signed main()
{
	std::ios::sync_with_stdio(false);
    cin.tie(0) , cout.tie(0);
	string s;
	cin>>s;
	string ss=s;
	reverse(ss.begin(),ss.end());
	int ans=max(solve(s),solve(ss));
	cout<<ans;
	return 0;
}

目前尚未有2024年第十四届蓝桥杯大赛软件国赛C/C++大学B的真题与题解发布,因为该事的时间线可能还未到达公布阶段[^1]。然而,可以基于以往的比形式和内容推测其考察的知识点范围以及提供一些常见的练习方向。 以下是关于如何准备此类比的一些指导: ### 准备指南 #### 一、熟悉基础算法 掌握基本的数据结构和经典算法对于参者至关重要。这包括但不限于数、链表、栈、队列等数据结构的应用;排序(快速排序、归并排序)、查找(二分法)、动态规划等问题解决方法的学习与实践。 ```cpp // 快速排序实现 (C++) void quickSort(int arr[], int low, int high){ if(low < high){ int pi = partition(arr,low,high); quickSort(arr, low, pi-1); quickSort(arr, pi+1, high); } } int partition (int arr[], int low, int high){ int pivot = arr[high]; int i = (low - 1); for (int j = low; j <= high- 1; j++){ if (arr[j] < pivot){ i++; swap(&arr[i], &arr[j]); } } swap(&arr[i + 1], &arr[high]); return (i + 1); } ``` ```java // 快速排序实现 (Java) public static void quickSort(int[] array, int start, int end) { if(start >= end) return; int pivotIndex = partition(array, start, end); quickSort(array, start, pivotIndex - 1); quickSort(array, pivotIndex + 1, end); } private static int partition(int[] array, int start, int end) { int pivotValue = array[end]; int index = start; for(int i=start;i<end;i++) { if(array[i]<pivotValue) { swap(array,i,index++); } } swap(array,end,index); return index; } ``` #### 二、深入理解编程语言特性 无论是使用C++还是Java参加竞,都需要深入了解所选语言的特点及其标准库的功能。例如,在C++中熟练运用STL容器类如vector、map等能够极大提高编码效率;而在Java里,则需熟知Collections框架下的各类集合类型及其实现原理。 #### 三、模拟实战训练 通过历年试题进行反复演练是非常有效的备考方式之一。虽然现在无法获取到最新的2024年具体题目,但是可以通过分析往年的考题来预测可能出现的新颖考点,并针对性加强薄弱环节。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值