1.设A={1,2,3},B={a,b,c},确定下列关系是否为从A到B的函数,为什么?如果是函数,是单射、满射还是双射,并指出其定义域和值域。
(1){<1,a>,<2,a>,<3,c>}。是一个函数,不是一个单射或满射
(2){<1,c>,<2,a>,<3,b>}。双射
(3){<1,a>,<1,b>,<3,c>}。不是函数
(4){<1,b>,<2,b>,<3,b>}。是一个函数,不是一个单射或满射
2.设f:N×N->N,f(<x,y>)=xy。求f(N×{1}),f-1({0}),并说明f是否是单射、满射和双射?有2*2和1*4,所以不是单射1*N->N所以是满射
3.设f、g和h是Z到Z的函数,Z是整数集,f(z)=3z,g(z)=3z+1,h(z)=3z+2,求fog,goh。fog(x)=f(g(x)),goh(x)=g(h(x))
- 证明[2,3]≈[0,1],且它们的基数为À。
令f=x-2,则易证
是双射,所以[2,3]≈[0,1]
5.令X={x1,x2,…,xm},Y={y1,y2,…,yn}。问
(1)有多少个不同的由X到Y的函数? n^m
(2)当n、m满足什么条件时,存在单射,且有多少个不同的单射?
|m|≤|n|时,存在单射,不同的单射有
m!=n(n-1)(n―m―1)个
- 当n、m满足什么条件时,存在满射,且有多少个不同的满射?
当|n|≤|m|时,存在满射,
(4)当n、m满足什么条件时,存在双射,且有多少个不同的双射?
当|m|=|n|时,不同的双射有m!