复习离散数学

1.设A={1,2,3},B={abc},确定下列关系是否为从AB的函数,为什么?如果是函数,是单射、满射还是双射,并指出其定义域和值域。

(1){<1,a>,<2,a>,<3,c>}。是一个函数,不是一个单射或满射

(2){<1,c>,<2,a>,<3,b>}。双射

(3){<1,a>,<1,b>,<3,c>}。不是函数

(4){<1,b>,<2,b>,<3,b>}。是一个函数,不是一个单射或满射

2.设fN×N->Nf(<xy>)=xy。求f(N×{1}),f-1({0}),并说明f是否是单射、满射和双射?2*2和1*4所以不是单射1*N->N所以是满射

3.设fghZZ的函数,Z是整数集,f(z)=3zg(z)=3z+1,h(z)=3z+2,求foggohfog(x)=f(g(x))goh(x)=g(h(x))

  1. 证明[2,3]≈[0,1],且它们的基数为À

令f=x-2,则易证

是双射,所以[2,3]≈[0,1]

5.令X={x1,x2,…,xm},Y={y1,y2,…,yn}。问

(1)有多少个不同的由XY的函数? n^m

(2)当nm满足什么条件时,存在单射,且有多少个不同的单射?

|m|≤|n|时,存在单射不同的单射有

m!=n(n-1)(nm―1)个

  1. nm满足什么条件时,存在满射,且有多少个不同的满射?

当|n|≤|m|时,存在满射

(4)当nm满足什么条件时,存在双射,且有多少个不同的双射?

当|m|=|n|时不同的双射有m!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值