唯一分解定理(算术基本定理)

文章介绍了唯一分解定理的概念,通过代码实现如何从小到大枚举找出正整数的质因子,并展示了如何应用这个定理求解正整数的因子个数,如例题中计算100的阶乘的正约数数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

唯一分解定理是指:对于每一个大于1的正整数N都可以分解为有限个质数相乘且分解的形式是唯一的。

对于唯一分解定理的代码实现:

从小到大枚举(从2开始枚举,因为1可以整除任何数) 如果所枚举的数字是该数的因子那么一直整除该数 直至该数被整除为1或者该数不是所枚举数的因子则结束

不需要枚举质数,只用从小到大直接枚举即可 ,因为按照上述策略不会出现合数相乘的情况

因为合数都会被进一步分解为质数。

def f(n):

    factor=[]

    for i in range (2,n+1):

        ##如果i为n的因子,那么n一直整除i直至为1或者不为该数的因子        

        ##此处如果i从1开始那么将陷入while死循环

        while n%i==0:

            n=n//i

            factor.append(i)

        if n==1:

            break

    return factor

唯一分解定理的应用:

求正整数N的因子个数(此处可以理解为N分解为的所有质因子经过排列组合出的所有可能即为正整数N的因子)

对于代码实现N的因子之和需要用到等比求和公式

例题:求100的阶乘的正约数的个数

解题思路:

对于大于1的正整数N

它的因子个数可以通过唯一分解定理的应用来完成求解

求100的阶乘的因子个数即可以分解为求1,2,3,....100的因子个数

因为这些数为合数也是100的阶乘的因子

这些因子在唯一分解定理中可以求出各自的唯一分解定理形式

合起来即为100的阶乘的唯一分解定理形式

通过collections库中的Counter函数记录每个质因数出现的次数

(Counter(ls)可以把组合数据类型转化为计数字典)

from collections import Counter

def f(n):

    factor=[]

    for i in range (2,n+1):

        while n%i==0:

            factor.append(i)

            n//=i

        if n==1:

            break

    return factor

ls=[]

for i in range (2,101):

    ls+=f(i)

ls=Counter(ls)

ans=1

for x,y in ls.items():

    ans*=(1+y)

print(ans)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值