2023年第九届“数维杯”国际大学生数学建模挑战赛C题详细解析 (LSTM + BERT + Siamese Network)

这次“数维杯”咱们Unicorn建模团队继续出征!根据我们团队的分析,本次比赛的C题相对来说难度不是很大,如果做过深度学习相关的同学可以大胆去选择该题进行作答!

首先先来回顾一下题目:

问题综述:

近年来,随着信息技术的迅猛发展,人工智能的各种应用层出不穷。典型的应用包括机器人导航、语音识别、图像识别、自然语言处理以及智能推荐等。由ChatGPT等大型语言模型(LLMs)主导的大语言模型在全球范围内备受欢迎,并得到广泛推广和使用。然而,虽然我们充分认识到这些模型为人们带来的丰富、智能和便捷体验,但也必须注意到使用AI文本生成等工具可能带来的许多风险。

问题一: AI文本生成规则推断

使用AI根据提供的Web of Science链接重写文章的部分,统计性地推断AI文本生成的基本规则。考虑的参数包括字数、生成次数、是否翻译以及文本生成的风格。

问题二: AI段落生成识别

评估附录III中提供的十篇文章中的每一段是否由AI生成。考虑的因素包括语言、翻译、生成频率以及字数限制等。

问题三: AI段落生成评估

类似问题二,在附录III中的十篇文章中基于语言、翻译、生成频率以及字数限制等因素评估AI生成的段落。

问题四: 数学模型中的剽窃检测

建立相关理论和方法,进一步确定文章中的数学模型、图像和公式是否是剽窃内容。使用附录IV中的例子来演示和评估建立的模型。

问题1可以建立LSTM模型进行解决,建模过程如下:

1. 数据准备:

- 从Web of Science提供的链接中获取文章数据,对文章进行预处理,包括去除HTML标签、处理特殊字符、分句、分段等。

- 将文本数据划分为训练集和测试集。

2. 文本向量化:

- 使用词嵌入技术,将文本数据转换为向量表示,例如使用Word2Vec或GloVe。

- 考虑使用预训练的嵌入模型,以便更好地捕捉词汇之间的语义关系。

3. 序列生成模型设计:

- 构建LSTM(长短时记忆网络)模型,用于生成文本序列。

- 输入层使用文本向量化后的序列,可以考虑使用前一段文字作为上下文。

- 设置LSTM层,决定层数和每层的单元数,以便模型能够捕捉文本中的长期依赖关系。

- 输出层的激活函数使用softmax,以生成下一个词的概率分布。

4. 模型训练:

- 使用训练集对LSTM模型进行训练,优化模型参数。

- 设定适当的损失函数,例如交叉熵损失,反映生成文本与目标文本之间的差异。

- 使用梯度下降或其他优化算法进行模型参数的更新。

5. 模型生成:

- 在测试集上评估模型的性能,检查生成文本的质量。

- 通过调整温度参数来控制生成文本的创造性和多样性,温度较高会增加随机性,而温度较低则更加确定性。

6. 模型评估:

- 使用BLEU分数、ROUGE分数等评估指标来量化生成文本与目标文本之间的相似性。

- 对生成文本进行人工评估,确保生成的文本在语法、语义和风格上符合要求。

7. 超参数调整:

- 调整LSTM模型的超参数,包括学习率、批大小、LSTM层的数量和单元数等,以提高模型性能。

- 使用交叉验证等技术进行超参数调整。

8. 结果分析与改进:

- 分析生成文本的规律,了解LSTM模型在生成文本时的表现。

- 根据分析结果进行模型改进,可能需要调整模型结构或优化算法。

示例代码如下:

import requests
from bs4 import BeautifulSoup

def get_text_from_url(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')
    paragraphs = soup.find_all('p')  # 假设文章的段落是用 <p> 标签包裹的

    text = ""
    for paragraph in paragraphs:
        text += paragraph.get_text() + " "

    return text

# 以Web of Science提供的链接为例
article_url = "https://www.example.com/article"
article_text = get_text_from_url(article_url)

import re

def preprocess_text(text):
    # 去除特殊字符和数字
    text = re.sub(r'[^a-zA-Z\s]', '', text)
    # 转换为小写
    text = text.lower()
    return text

preprocessed_text = preprocess_text(article_text)

import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

# 使用上述 preprocessed_text
texts = [preprocessed_text]

# 文本向量化
tokenizer = Tokenizer()
tokenizer.fit_on_texts(texts)
total_words = len(tokenizer.word_index) + 1

input_sequences = []
for line in texts:
    token_list = tokenizer.texts_to_sequences([line])[0]
    for i in range(1, len(token_list)):
        n_gram_sequence = token_list[:i+1]
        input_sequences.append(n_gram_sequence)

# Padding
max_sequence_length = max([len(seq) for seq in input_sequences])
input_sequences = pad_sequences(input_sequences, maxlen=max_sequence_length, padding='pre')

# 创建输入和输出
X, y = input_sequences[:, :-1], input_sequences[:, -1]
y = np.array(tf.keras.utils.to_categorical(y, num_classes=total_words))

# 构建LSTM模型
model = Sequential()
model.add(Embedding(total_words, 50, input_length=max_sequence_length-1))
model.add(LSTM(100))
model.add(Dense(total_words, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# 训练模型
model.fit(X, y, epochs=50, verbose=1)

# 生成文本
。。。完整版详见仓库

在问题三中,我们需要建立一个模型来评估AI生成文本的质量,包括语义一致性、逻辑连贯性、创造性等方面。为了实现这个目标,我们可以使用预训练的语言模型BERT,来对生成的文本进行评估。具体解答过程如下:

1. 数据准备:

- 获取一组包含AI生成文本和相应真实文本的数据集。

2. 特征提取:

- 使用预训练的语言模型(例如BERT)来提取文本特征。这些特征可以包括词嵌入、句子嵌入等。

3. 构建评估模型:

- 使用提取的文本特征,构建一个评估模型。可以选择一个二元分类模型,用于区分AI生成的文本和真实文本的质量。

4. 模型训练:

- 使用带有标签的训练集,对评估模型进行训练。标签可以是0(低质量)或1(高质量)。

5. 模型评估:

- 使用测试集对模型进行评估,并计算准确率、精确度、召回率等指标。

6. 结果分析与改进:

- 分析模型的输出,查看模型在哪些方面出现错误。

- 根据分析结果改进模型,可能需要调整模型结构、超参数或优化算法。

使用BERT建模的过程如下:

在使用BERT进行质量评估的建模过程中,我们首先需要使用BERT模型对文本进行特征提取,然后构建一个评估模型来判断文本的质量。以下是详细的建模和解答过程:

1. 数据准备:

- 获取一组包含AI生成文本和相应真实文本的数据集。

- 给定每个样本一个标签,标记为0表示AI生成文本,标记为1表示真实文本。

2. 特征提取:

- 使用BERT模型对文本进行特征提取。我们可以使用Hugging Face的`transformers`库中的预训练BERT模型。

3. 构建评估模型:

- 使用提取的BERT特征,构建一个评估模型。这可以是一个简单的二元分类模型,例如Logistic Regression。

示例代码如下:

from transformers import BertTokenizer, BertForSequenceClassification
from torch.utils.data import DataLoader, TensorDataset
import torch
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 示例数据
generated_texts = ["AI-generated text 1", "AI-generated text 2", ...]
real_texts = ["Real text 1", "Real text 2", ...]
labels = [0, 0, ..., 1, 1, ...]  # 0表示AI生成的文本,1表示真实文本

# 使用BERT tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 处理数据
tokenized_texts = tokenizer(generated_texts + real_texts, padding=True, truncation=True, return_tensors="pt")
labels = torch.tensor(labels)

# 划分训练集和测试集
train_inputs, test_inputs, train_labels, test_labels = train_test_split(tokenized_texts, labels, test_size=0.2, random_state=42)

# 构建数据加载器
train_dataset = TensorDataset(train_inputs['input_ids'], train_inputs['attention_mask'], train_labels)
test_dataset = TensorDataset(test_inputs['input_ids'], test_inputs['attention_mask'], test_labels)

train_dataloader = DataLoader(train_dataset, batch_size=8, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=8, shuffle=False)

# 使用BERT进行分类
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
optimizer = torch.optim.AdamW(model.parameters(), lr=2e-5)

# 训练模型
num_epochs = 3
for epoch in range(num_epochs):
    model.train()
    for batch in train_dataloader:
        input_ids, attention_mask, labels = batch
        optimizer.zero_grad()
        outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
        loss = outputs.loss
        loss.backward()
        optimizer.step()

# 评估模型
model.eval()
predictions = []
with torch.no_grad():
    for batch in test_dataloader:
        input_ids, attention_mask, labels = batch
        outputs = model(input_ids, attention_mask=attention_mask)
        logits = outputs.logits
        predictions.extend(logits.argmax(dim=1).cpu().numpy())

# 计算准确率
accuracy = accuracy_score(test_labels.numpy(), predictions)
print(f'Accuracy: {accuracy}')

大家可以查看我的个人简介并关注我们团队~里面有全部题目的详细解答过程!

或者查看完整版:2023年第九届“数维杯”国际大学生数学建模挑战赛全题目解析+思路+代码实现+论文指导

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
2023 年第八届数维大学生数学挑战赛b要求我们通过数学型来解决问。在解答这道之前,我们首先需要理解目的要求和条件。 经过分析目内容,我们可以得知该要求我们确定三幅相互切线连接的圆的半径和切点位置。首先,我们可以通过计算出三个切点的坐标来确定切点位置。可以利用已知条件,使用平行四边形法则,得到切点的坐标。然后,我们可以根据切点坐标计算出三个圆之间的距离,从而求出圆的半径。 为了数学型解决问,我们可以做如下步骤: 第一步,确定切点坐标:根据已知条件,计算出三个切点的坐标。假设三个切点坐标分别为A(x1, y1),B(x2, y2),C(x3, y3)。 第二步,计算圆心坐标:利用平行四边形法则,根据已知的切点坐标可以求得三个圆心的坐标。令圆心坐标分别为O1(xo1, yo1),O2(xo2, yo2),O3(xo3, yo3)。 第三步,计算半径:利用已知的切点和圆心坐标,可以计算出三幅圆之间的距离。令圆的半径分别为r1,r2,r3。 最后,我们可以将以上三步整合在一起,数学型来解决问。运用相关的几何原理和计算方法,可以计算出目要求的圆的半径和切点位置。 总的来说,通过数学型,可以解决2023 年第八届数维大学生数学挑战赛b。我们可以分步骤确定切点坐标和圆心坐标,进而计算出圆的半径。这样,我们就能够满足目的需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值