从数学应用角度推理理解雅可比行列式

问、已知一个向量基\vec {a}=(x,y),另一个向量基为\vec {b}=(f_1(x,y),f_2(x,y)),问如何用\vec {a}表示\vec {b}

答、可以运用一个2×2的矩阵\vec {e}= \left( \begin{matrix} a & b \\ c & d \end{matrix} \right),令\vec{b}=\vec{a}×\vec{e}

(x,y) \left( \begin{matrix} a & b \\ c & d \end{matrix} \right)=(f_1(x,y),f_2(x,y))

ax+cy=f_1(x,y)\textcircled{1}\\ \\bx+dy=f_2(x.y)\textcircled{2}

\textcircled{1}式左右两边关于x求导得:a=\frac{d(f_1(x,y))}{dx}

\textcircled{2}式左右两边关于x求导得:b=\frac{d(f_2(x,y))}{dx}

\textcircled{1}式左右两边关于y求导得:c=\frac{d(f_1(x,y))}{dy}

\textcircled{2}式左右两边关于y求导得:d=\frac{d(f_2(x,y))}{dy}

将a、b、c、d代入$ \vec {e}= \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) $

得到\vec {e}= \left( \begin{matrix} \frac{d(f_1(x,y))}{dx} & \frac{d(f_2(x,y))}{dx} \\ \frac{d(f_1(x,y))}{dy} &\frac{d(f_2(x,y))}{dy} \end{matrix} \right)    即\vec {e}= \left( \begin{matrix} \frac{df_1}{dx} & \frac{df_2}{dx} \\\\ \frac{df_1}{dy} &\frac{df_2}{dy} \end{matrix} \right)

此时得到的\vec{e}就是一个二维的雅可比行列式,三维,四维以此类推。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值