鸡兔同笼,但是线性代数

灵感来自:bilibili,巨佬!

我们有 14 14 14 个头, 32 32 32 只脚,所有鸡和兔都没有变异,头和脚都完整,没有数错。还有什么 Bug 吗

小学奥数

假设全是鸡,则有 14 × 2 = 28 14 \times 2 = 28 14×2=28 只脚。

但是少了 4 4 4 只脚,因为我们看到一只兔子就施展膜法将其变成了鸡,导致所有兔子都变成了鸡。

每只兔子变成鸡,头数不变,少了两只脚,所以有 4 ÷ 2 = 2 4 \div 2 = 2 4÷2=2 只兔子,有 14 − 2 = 12 14 - 2 = 12 142=12 只鸡。

初中

鸡爷解:设有 x x x 只鸡, y y y 只兔。

则有:

{ x + y = 14 2 x + 4 y = 32 \begin{cases} x+y=14 \\ 2x+4y=32 \end{cases} { x+y=142x+4y=32

解得(过程太简单不写了 ,自行高斯消元):

{ x = 12 y = 2 \begin{cases} x=12 \\ y=2 \end{cases} { x=12y=2

进入正题!(已经完全了解矩阵的神犇跳到最后)

线性变换(线性映射)是什么:一个函数,输入输出都是向量,满足如下性质:

f ( k x ⃗ ) = k f ( x ⃗ ) f ( x ⃗ + y ⃗ ) = f ( x ⃗ ) + f ( y ⃗ ) \begin{aligned} f(k\vec x)&=kf(\vec x) \\ f(\vec x + \vec y) &= f(\vec x) + f(\vec y) \end{aligned} f(kx )f(x +y )=kf(x )=f(x )+f(y )

这个 f f f 就是一个线性映射,通常记为 A A A

向量是什么:一个 vector,还不懂吗。哦读者可能不是 C艹 党,所以说一下:向量就是一系列数,类似我们幼儿园就学过的数对。

向量也可以用来表示一个点,学习时通常是 2 2 2 维或 3 3 3 维的:

+--+--+--+--+--+--+--+--+
|  |  |  |  H  |  |  |  |
+--+--+--+--+--+--+--O--+
|  |  |  |  H  |  |  |  |
+--+--+--+--+--+--+--+--+
|  |  |  |  H  |  |  |  |
+==+==+==+==+==+==+==+==+
|  |  |  |  H  |  |  |  |
+--+--+--+--+--+--+--+--+
|  |  |  |  H  |  |  |  |
+--+--+--+--+--+--+--+--+
|  |  |  |  H  |  |  |  |
+--+--+--+--+--+--+--+--+

-| 是坐标轴,= x x x 轴,H y y y 轴,每条小线段长度为 1 1 1

我们要表示图中的 O 点,就可以用数对,注意到 O 点在第 3 3 3 列,第 2 2 2 行,所以可以表示为 ( 3 , 2 ) (3, 2) (3,2)

如果我们想换种方法呢?

[ 3 2 ] \begin{bmatrix} 3 \\ 2 \end{bmatrix} [32]

记为 O ⃗ \vec{O} O 怎么样? O O O 是名字,上面的箭头 ⃗ \vec{} 表示它是一个向量。

实际上,向量可以理解为一个点,也可以理解为一条从原点指向某个点的箭头。

向量的数乘(就是一个数字乘上一个向量)就是把这个向量的长度乘上这个数,也就是把 x x x y y y 坐标分别乘上这个数。

向量的加法(两个向量之和)就是把两个向量头尾拼起来,然后记录它们最终指向的点,它们的和就是这个点。

是不是感觉和复数有点像?没错,复数可以表示向量,但是仅限二维,然而向量可以是三维,四维,一维,零维,甚至 114514 114514 114514 维(我乱说的)和 12288 12288 12288 维(据说 GPT 内部的向量就是这个)。

现在我们有一个神奇的线性映射 A A A,作用是把向量的长度乘 2 2 2。容易验证它满足线性映射的条件。

则对 O ⃗ \vec{O} O 进行 A A A 映射会怎么样?原本要记作 A ( O ⃗ ) A(\vec{O}) A(O ) 的,但是我们可以省略括号(真的吗,函数也可以吗),记作 A O ⃗ A\vec{O} AO (不管你是怎么想的,反正目前数学界就是这么写的),也可以记作 A A A O ⃗ \vec{O} O 的积,也就是它们相乘的结果。

其实,一个线性映射就是一个矩阵,它的具体含义暂且不谈,这里只需要知道两个矩阵相乘就是两个矩阵相继作用的结果,比如 A A A B B B 相乘,就是 A B AB AB,表示先进行 B B B 变换再进行 A A A 变换,很奇怪,但是函数不就是这样的吗?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值