算法与数据结构的区别
数据结构只是静态的描述了数据元素之间的关系。
高效的程序需要在数据结构的基础上设计和选择算法。
程序 = 数据结构 + 算法
总结:算法是为了解决实际问题而设计的,数据结构是算法需要处理的问题载体
概念
数据是一个抽象的概念,将其进行分类后得到程序设计语言中的基本类型。如:int,float,char等。数据元素之间不是独立的,存在特定的关系,这些关系便是结构。数据结构指数据对象中数据元素之间的关系。
Python给我们提供了很多现成的数据结构类型,这些系统自己定义好的,不需要我们自己去定义的数据结构叫做Python的内置数据结构,比如列表、元组、字典。而有些数据组织方式,Python系统里面没有直接定义,需要我们自己去定义实现这些数据的组织方式,这些数据组织方式称之为Python的扩展数据结构,比如栈,队列等。
抽象数据类型(Abstract Data Type)
抽象数据类型(ADT)的含义是指一个数学模型以及定义在此数学模型上的一组操作。即把数据类型和数据类型上的运算捆在一起,进行封装。引入抽象数据类型的目的是把数据类型的表示和数据类型上运算的实现与这些数据类型和运算在程序中的引用隔开,使它们相互独立。
最常用的数据运算有五种:插入,删除,修改,查找,排序
顺序表
在程序中,经常需要将一组(通常是同为某个类型的)数据元素作为整体管理和使用,需要创建这种元素组,用变量记录它们,传进传出函数等。一组数据中包含的元素个数可能发生变化(可以增加或删除元素)。
对于这种需求,最简单的解决方案便是将这样一组元素看成一个序列,用元素在序列里的位置和顺序,表示实际应用中的某种有意义的信息,或者表示数据之间的某种关系。
这样的一组序列元素的组织形式,我们可以将其抽象为线性表。一个线性表是某类元素的一个集合,还记录着元素之间的一种顺序关系。线性表是最基本的数据结构一,在实际程序中应用非常广泛,它还经常被用作更复杂的数据结构的实现基础。
根据线性表的实际存储方式,分为两种实现模型:
1.顺序表,将元素顺序地存放在一块连续的存储区里,元素间的顺序关系由它们的存储顺序自然表示
2.链表,将元素存放在通过链接构造起来的一系列存储块中。
顺序表的基本形式
基本布局:取值快
元素外置:对数据类型的存储更灵活(哪有空间就往哪存),取值慢 (实际更多考虑元素外置,为了应对数据本身是动态变化的)
图a表示的是顺序表的基本形式,数据元素本身连续存储,每个元素所占的存储单元大小固定相同,元素的下标是其逻辑地址,而元素存储的物理地址(实际内存地址)可以通过存储区的起始地址Loc (e0)加上逻辑地址(第i个元素)与存储单元大小©的乘积计算而得,即:Loc(ei) = Loc(e0) + c*i ,故,访问指定元素时无需从头遍历,通过计算便可获得对应地址,其时间复杂度为O(1)。
如果元素的大小不统一,则须采用图b的元素外置的形式,将实际数据元素另行存储,而顺序表中各单元位置保存对应元素的地址信息(即链接)。由于每个链所需的存储量相同,通过上述公式,可以计算出元素链接的存储位置,而后顺着链接找到实际存储的数据元素。
注意,图b中的c不再是数据元素的大小,而是存储一个链接地址所需的存储量,这个量通常很小。
图b这样的顺序表也被称为对实际数据的索引,这是最简单的索引结构
顺序表的结构与实现
顺序表的结构
一个顺序表的完整信息包括两部分,一部分是表中的元素集合,另一部分是为实现正确操作而需记录的信息,
即有关表的整体情况的信息,这部分信息主要包括元素存储区的容量和当前表中已有的元素个数两项。
顺序表的两种基本实现方式
图a为一体式结构,存储表信息的单元与元素存储区以连续的方式安排在一块存储区里,两部分数据的整体形成一个完整的顺序表对象。
一体式结构整体性强,易于管理。但是由于数据元素存储区域是表对象的一部分,顺序表创建后,元素存储区就固定了。
图b为分离式结构,表对象里只保存与整个表有关的信息(即容量和元素个数),实际数据元素存放在另一个独立的元素存储区里,通过链接与基本表对象关联。(逻辑地址–>物理地址–>元素)
一体式的灵活度差一些,当添加新数据的时候,表头+数据元素会整体重构内存地址
分离式:只是局部重构数据元素区域的内存地址
以固定数字增加存储位置的话,这种称为线性增长,特点:节省空间,但是操作次数多,需要更多的时间
成倍的话有可能会浪费空间,但是以空间换时间的形式是推荐的
元素存储区替换
一体式结构由于顺序表信息区与数据区连续存储在一起,所以若想更换数据区,则只能整体搬迁,即整个顺序表对象(指存储顺序表的结构信息的区域)改变了。
分离式结构若想更换数据区,只需将表信息区中的数据区逻辑地址更新即可,而该顺序表对象不变。
元素存储区扩充
采用分离式结构的顺序表,若将数据区更换为存储空间更大的区域,则可以在不改变表对象的前提下对其数据存储区进行了扩充,所有使用这个表的地方都不必修改。只要程序的运行环境(计算机系统)还有空闲存储,这种表结构就不会因为满了而导致操作无法进行。人们把采用这种技术实现的顺序表称为动态顺序表,因为其容量可以在使用中动态变化。
扩充的两种策略
1.每次扩充增加固定数目的存储位置,如每次扩充增加10个元素位置,这种策略可称为线性增长。 特点:节省空间,但是扩充操作频繁,操作次数多。
2.每次扩充容量加倍,如每次扩充增加一倍存储空间。 特点:减少了扩充操作的执行次数,但可能会浪费空间资源。以空间换时间,推荐的方式
Python中的顺序表
Python中的list和tuple两种类型采用了顺序表的实现技术,具有前面讨论的顺序表的所有性质。
tuple是不可变类型,即不变的顺序表,因此不支持改变其内部状态的任何操作,而其他方面,则与list的性质类似。
list的基本实现技术
Python标准类型list就是一种元素个数可变的线性表,可以加入和删除元素,并在各种操作中维持已有元素的
顺序(即保序),而且还具有以下行为特征:
基于下标(位置)的高效元素访问和更新,时间复杂度应该是O(1);
为满足该特征,应该采用顺序表技术,表中元素保存在一块连续的存储区中。
允许任意加入元素,而且在不断加入元素的过程中,表对象的标识(函数id得到的值)不变。
为满足该特征,就必须能更换元素存储区,并且为保证更换存储区时list对象的标识id(内存中的地址)不变,只能采用分离式实现技术。
在Python的官方实现中,list就是一种采用分离式技术实现的动态顺序表。
在Python的官方实现中,list实现采用了如下的策略:在建立空表(或者很小的表)时,系统分配一块能容纳8
个元素的存储区;在执行插入操作(insert或append)时,如果元素存储区满就换一块4倍大的存储区。但如
果此时的表已经很大(目前的阀值为50000),则改变策略,采用加一倍的方法。引入这种改变策略的方式,
是为了避免出现过多空闲的存储位置。
链表
为什么需要链表
顺序表的构建需要预先知道数据大小来申请连续的存储空间,而在进行扩充时又需要进行数据的搬迁,所以使用起来并不是很灵活。
链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理。
链表的定义
链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是不像顺序表一样连续存储数据,而是在每一个节点(数据存储单元)里存放下一个节点的位置信息(即地址)。
单向链表
单向链表也叫单链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个
链接域。这个链接指向链表中的下一个节点,而最后一个节点的链接域则指向一个空值。
单向链表图示
表元素域elem用来存放具体的数据。 链接域next用来存放下一个节点的位置(python中的标识) 变量p指向链表的头节点(首节点)的位置,从p出发能找到表中的任意节点。
python中无链表,需要自己构造
class Node():
'''1.创建一个节点类 两个域'''
def __init__(self, val, next=None):
self.val = val # 存储数据元素
self.next = next # 链接域:寻找到下一个节点
class Linklist():
'''2.生成一个链表类,生成对象后可以增删改查'''
def __init__(self):
# 1.生成了一个头节点,表示链表的开端,便于找寻下一个节点对象
self.head = Node(None)
def init_list(self,list_data):
'''为链表添加一组新节点list_data[1,3,4]'''
# 1.生成一个可以移动的P变量
p = self.head
for data in list_data:
# 2.生成节点对象
# node = Node(data)
# 3.挂节点
# p.next= node
p.next = Node(data)
# 4.p不断往后走
p = p.next
return list_data
# 遍历
def show(self):
p = self.head.next
# P 不断往后走
while p is not None:
print(p.val) # 查看当前P节点的值
p = p.next
# 判断链表是否为空
def is_empty(self):
# if self.head.next is None:
# return False
# else:
# return True
return self.head.next is None
# 往尾部添加新节点
def append(self, val):
p = self.head
while p.next is not None:
p = p.next
# 跳出while说明当前节点找到(.next = None)
# 生成新节点并挂上上一个节点
p.next = Node(val)
# 清空链表
def clear(self):
self.head.next = None # python垃圾回收机制
# 往头部添加数据
def head_insert(self, val):
# 1.生成一个节点
node = Node(val)
node.next = self.head.next
# 2.新节点接在头节点后面
self.head.next = node
# 指定位置插入数据
def index_insert(self, index, val):
p = self.head
for i in range(index):
if p.next is None:
break
p = p.next
node = Node(val)
node.next = p.next
p.next = node
# 指定具体值删除
def delete(self, value):
p = self.head
while p.next is not None and p.next.val != value:
p = p.next
if p.next is None:
raise Exception('value not in list')
else:
p.next = p.next.next
# 指定索引删除
def index_del(self,index):
p = self.head
for i in range(index):
if p.next is None:
raise Exception('pop index out of range')
p = p.next
p.next = p.next.next
# 指定位置修改
def index_updata(self, index, val):
p = self.head.next
for i in range(index):
if p.next is None:
raise Exception('pop index out of range')
p = p.next
# 修改当前节点的值
p.val = val
总结
存储模型:顺序表,链表
一.顺序表
基本形式:基本布局,元素外置
1.基本布局:取值快,但存储不灵活 (每个元素大小统一可用)
2.元素外置:取值慢,但存储灵活
两种基本实现方式:一体式结构,分离式结构
1.一体式结构:整体性强,易于管理,但灵活度差,空间不够要整体重构
2.分离式结构:灵活度强,空间不够只需局部重构
存储扩充方式:固定扩充,成倍扩充(以空间换时间,推荐)
二.链表