D. Minimize the Difference
题意
思路:最优结果一定为一段非递减的,而且要保证最好平均,使所有位置尽可能平均以最小化极差。对于前i个位置,一定是最小值出现的位置,我们想使得这些数做到平均,也就是sum/i,但是由于只能由大数转移到后面的小数上,只能取得最小的sum/i,
因为在遍历的过程中,每出现一个小于sum/i的值的数,都会使得sum/i变小,如果不这样做这个数就会成为小于sum/i,还不如做一个平均值。(虽然只可以由大的数传递给小的数,但是在传递后可能让这个大数变小,让前面的数继续传给他)。
如果出现的是大于sum/i的数,因为不可以向前面传递,所以不会影响最小的sum/i。
这样就可以求出最优的min(a1,a2,a3..an)。
同理,从n-1做一遍同样的后缀操作,最后算出结果。
代码如下:
#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cstdio>
#include<algorithm>
#include<string>
#include<string.h>
#include<queue>
#include<math.h>
#include<set>
#include<functional>
using namespace std;
#define int long long
using ull = unsigned long long;
using i128 = __int128_t;
inline int inc(int x,int v,int mod){x+=v;return x>=mod?x-mod:x;}//代替取模+
#define endl '\n'
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
const int N = 2e3 + 10, M = 1e5 + 10;
const int mod = 998244353;
inline int read()
{
int x = 0,f = 1;
char ch = getchar();
while(ch < '0' || ch > '9')
{
if(ch == '-')
f = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9')
x = x * 10 + ch - '0',ch = getchar();
return x * f;
}
void solve()
{
int n;
cin >> n;
std::vector<int> arr(n + 10);
for(int i = 1; i <= n; i ++)
{
cin >> arr[i];
}
int minx = arr[1];
int sum = 0;
for(int i = 1; i <= n; i ++)
{
sum += arr[i];
minx = min(minx, sum / i);
}
sum = 0;
int maxx = arr[n];
for(int i = n; i >= 1; i --)
{
sum += arr[i];
maxx = max(maxx,(int)ceil(1.0 * sum / (n - i + 1)));
}
cout << maxx - minx << endl;
}
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);
int tt;
cin >> tt;
cout << endl;
//tt = 1;
while(tt --)
{
solve();
}
}
E. Prefix GCD
思路:
两个数 x,y 取gcd,一定会 gcd(x,y)≤max(x,y)/2,即每次向序列后面加一个数,前缀的 gcd 都至少会除 2,则发现仅需通过不超过 log2v 个数,即可令前缀 gcd 快速地减小到全局 gcd。
则显然第一个位置一定放全局最小值,
然后考虑每次 O(n) 地枚举向序列后面加的数并取使gcd 减小的最多的加上去,若加上后变为全局 gcd 则可直接停止枚举。
#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cstdio>
#include<algorithm>
#include<string>
#include<string.h>
#include<queue>
#include<math.h>
#include<set>
#include<functional>
using namespace std;
#define int long long
using ull = unsigned long long;
using i128 = __int128_t;
inline int inc(int x,int v,int mod){x+=v;return x>=mod?x-mod:x;}//代替取模+
#define endl '\n'
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
const int N = 2e3 + 10, M = 1e5 + 10;
const int mod = 998244353;
inline int read()
{
int x = 0,f = 1;
char ch = getchar();
while(ch < '0' || ch > '9')
{
if(ch == '-')
f = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9')
x = x * 10 + ch - '0',ch = getchar();
return x * f;
}
void solve()
{
int n;
cin >> n;
std::vector<int> arr(n + 10);
std::vector<bool> st(n + 10);
int di = 0;
for(int i = 1; i <= n; i ++)
{
cin >> arr[i];
if(i == 1) di = arr[i];
else di = __gcd(di,arr[i]);
}
sort(arr.begin() + 1, arr.begin() + 1 + n);
st[1] = 1;
int sum = arr[1];
int cnt = 2;
int nowgcd = sum;
while(1)
{
int idx = 0;
int ca = 0;
for(int i = 1; i <= n; i ++)
{
if(st[i] == 1) continue;
if(nowgcd - __gcd(arr[i],nowgcd) > ca)
{
idx = i;
ca = nowgcd - __gcd(arr[i],nowgcd);
}
}
st[idx] == 1;
nowgcd = __gcd(nowgcd,arr[idx]);
sum += nowgcd;
cnt ++;
if(nowgcd == di)
{
sum += (n - cnt + 1) * di;
break;
}
}
cout << sum << endl;
}
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);
int tt;
cin >> tt;
cout << endl;
//tt = 1;
while(tt --)
{
solve();
}
}