Codeforces Round 973 Div. 2(D,E)

D. Minimize the Difference 

题意

 思路:最优结果一定为一段非递减的,而且要保证最好平均,使所有位置尽可能平均以最小化极差。对于前i个位置,一定是最小值出现的位置,我们想使得这些数做到平均,也就是sum/i,但是由于只能由大数转移到后面的小数上,只能取得最小的sum/i,

因为在遍历的过程中,每出现一个小于sum/i的值的数,都会使得sum/i变小,如果不这样做这个数就会成为小于sum/i,还不如做一个平均值。(虽然只可以由大的数传递给小的数,但是在传递后可能让这个大数变小,让前面的数继续传给他)。

如果出现的是大于sum/i的数,因为不可以向前面传递,所以不会影响最小的sum/i。

这样就可以求出最优的min(a1,a2,a3..an)。

同理,从n-1做一遍同样的后缀操作,最后算出结果。

代码如下:

#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cstdio>
#include<algorithm>
#include<string>
#include<string.h>
#include<queue>
#include<math.h>
#include<set>
#include<functional>
using namespace std;
#define int long long 
using ull = unsigned long long;
using i128 = __int128_t;
inline int inc(int x,int v,int mod){x+=v;return x>=mod?x-mod:x;}//代替取模+
#define endl '\n'
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N = 2e3 + 10, M = 1e5 + 10;
const int mod = 998244353;
inline int read()
{
    int x = 0,f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9')
    {
        if(ch == '-')
            f = -1;
        ch = getchar();
    }
    while(ch >= '0' && ch <= '9')
        x = x * 10 + ch - '0',ch = getchar();
    return x * f;
}

void solve()
{
    int n;
    cin >> n;
    std::vector<int> arr(n + 10);
    for(int i = 1; i <= n; i ++)
    {
        cin >> arr[i];
    }

    int minx = arr[1];
    int sum = 0;
    for(int i = 1; i <= n; i ++)
    {
        sum += arr[i];
        minx = min(minx, sum / i);
    }
    sum = 0;
    int maxx = arr[n];
    for(int i = n; i >= 1; i --)
    {
        sum += arr[i];
        maxx = max(maxx,(int)ceil(1.0 * sum / (n - i + 1)));
    }
    cout << maxx - minx << endl;
}  



signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    int tt;
    cin >> tt;
    cout << endl;
    //tt = 1;
    while(tt --)
    {
        solve();
    }   
}

E. Prefix GCD

 思路:

两个数 x,y 取gcd,一定会 gcd(x,y)≤max(x,y)/2,即每次向序列后面加一个数,前缀的 gcd 都至少会除 2,则发现仅需通过不超过 log2v 个数,即可令前缀 gcd 快速地减小到全局 gcd。

则显然第一个位置一定放全局最小值,

然后考虑每次 O(n) 地枚举向序列后面加的数并取使gcd 减小的最多的加上去,若加上后变为全局 gcd 则可直接停止枚举。

#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cstdio>
#include<algorithm>
#include<string>
#include<string.h>
#include<queue>
#include<math.h>
#include<set>
#include<functional>
using namespace std;
#define int long long 
using ull = unsigned long long;
using i128 = __int128_t;
inline int inc(int x,int v,int mod){x+=v;return x>=mod?x-mod:x;}//代替取模+
#define endl '\n'
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;

const int N = 2e3 + 10, M = 1e5 + 10;
const int mod = 998244353;
inline int read()
{
    int x = 0,f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9')
    {
        if(ch == '-')
            f = -1;
        ch = getchar();
    }
    while(ch >= '0' && ch <= '9')
        x = x * 10 + ch - '0',ch = getchar();
    return x * f;
}

void solve()
{
    int n;
    cin >> n;
    std::vector<int> arr(n + 10);
    std::vector<bool> st(n + 10);
    int di = 0;
    for(int i = 1; i <= n; i ++)
    {
        cin >> arr[i];
        if(i == 1) di = arr[i];
        else di = __gcd(di,arr[i]);
    }
    sort(arr.begin() + 1, arr.begin() + 1 + n);
    st[1] = 1;
    int sum = arr[1];
    int cnt = 2;
    int nowgcd = sum;
    while(1)
    {
        int idx = 0;
        int ca = 0;
        for(int i = 1; i <= n; i ++)
        {
            if(st[i] == 1) continue;
            if(nowgcd - __gcd(arr[i],nowgcd) > ca)
            {
                idx = i;
                ca = nowgcd - __gcd(arr[i],nowgcd);
            }
        }
        st[idx] == 1;
        nowgcd = __gcd(nowgcd,arr[idx]);
        sum += nowgcd;
        cnt ++;
        if(nowgcd == di)
        {
            sum += (n - cnt + 1) * di;
            break;
        }
    }
    cout << sum << endl;
}  



signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    int tt;
    cin >> tt;
    cout << endl;
    //tt = 1;
    while(tt --)
    {
        solve();
    }   
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值