每日一题 第六期 洛谷 寻找段落

寻找段落

题目描述

给定一个长度为 n n n 的序列 a a a,定义 a i a_i ai 为第 i i i 个元素的价值。现在需要找出序列中最有价值的“段落”。段落的定义是长度在 [ S , T ] [S, T] [S,T] 之间的连续序列。最有价值段落是指平均值最大的段落。

段落的平均值 等于 段落总价值 除以 段落长度

输入格式

第一行一个整数 n n n,表示序列长度。

第二行两个整数 S S S T T T,表示段落长度的范围,在 [ S , T ] [S, T] [S,T] 之间。

第三行到第 n + 2 n+2 n+2 行,每行一个整数表示每个元素的价值指数。

输出格式

一个实数,保留 3 3 3 位小数,表示最优段落的平均值。

样例 #1

样例输入 #1

3
2 2
3
-1
2

样例输出 #1

1.000

提示

【数据范围】

对于 30 % 30\% 30% 的数据有 n ≤ 1000 n \le 1000 n1000

对于 100 % 100\% 100% 的数据有 1 ≤ n ≤ 100000 1 \le n \le 100000 1n100000 1 ≤ S ≤ T ≤ n 1 \le S \le T \le n 1STn − 10 4 ≤ a i ≤ 10 4 -{10}^4 \le a_i \le {10}^4 104ai104

【题目来源】

tinylic 改编

AC代码:

#include<iostream>
#include<stdio.h>
#include<deque>
using namespace std;

const int N = 1e5 + 10;
int n,s,t;
double a[N];
double sum[N];
bool check(double x)
{
	sum[0] = 0;
	for(int i = 1; i <= n; i ++)
	{
	    sum[i] = sum[i - 1] + a[i] - x; //判断在某一区间内是否存在符合条件的值
	}
	deque<int>d;
	for(int i = 1; i <= n; i ++)
	{
		if(i >= s)
		{
			while(!d.empty() && sum[i - s] < sum[d.back()]) // 维护队列单调性
				d.pop_back();
			d.push_back(i - s);
		}
		if(!d.empty() && d.front() < i - t)//左端点离当前距离大于t,即长度超过了最大值
			d.pop_front();
		if(!d.empty() && sum[i] - sum[d.front()] >= 0)// 说明满足条件
			return true;
	}
	return false;
}
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	cin >> n >> s >> t;
	double maxs = -99999999,minn = 0x3f3f3f3f;
	for(int i = 1; i <= n; i ++)
	{
		cin >> a[i];
		maxs = max(maxs , a[i]);
		minn = min(minn , a[i]);//求出要二分的区间
	}
	double l = minn , r = maxs;
	//cout<< l << " " <<r <<endl;
	while(r - l > 1e-4)
	{
		double mid = ( l + r ) / 2;
		if(check(mid))
			l = mid;
		else 
			r = mid;
	}
	printf("%.3lf",l);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值