寻找段落
题目描述
给定一个长度为 n n n 的序列 a a a,定义 a i a_i ai 为第 i i i 个元素的价值。现在需要找出序列中最有价值的“段落”。段落的定义是长度在 [ S , T ] [S, T] [S,T] 之间的连续序列。最有价值段落是指平均值最大的段落。
段落的平均值 等于 段落总价值 除以 段落长度。
输入格式
第一行一个整数 n n n,表示序列长度。
第二行两个整数 S S S 和 T T T,表示段落长度的范围,在 [ S , T ] [S, T] [S,T] 之间。
第三行到第 n + 2 n+2 n+2 行,每行一个整数表示每个元素的价值指数。
输出格式
一个实数,保留 3 3 3 位小数,表示最优段落的平均值。
样例 #1
样例输入 #1
3
2 2
3
-1
2
样例输出 #1
1.000
提示
【数据范围】
对于 30 % 30\% 30% 的数据有 n ≤ 1000 n \le 1000 n≤1000。
对于 100 % 100\% 100% 的数据有 1 ≤ n ≤ 100000 1 \le n \le 100000 1≤n≤100000, 1 ≤ S ≤ T ≤ n 1 \le S \le T \le n 1≤S≤T≤n, − 10 4 ≤ a i ≤ 10 4 -{10}^4 \le a_i \le {10}^4 −104≤ai≤104。
【题目来源】
tinylic 改编
AC代码:
#include<iostream>
#include<stdio.h>
#include<deque>
using namespace std;
const int N = 1e5 + 10;
int n,s,t;
double a[N];
double sum[N];
bool check(double x)
{
sum[0] = 0;
for(int i = 1; i <= n; i ++)
{
sum[i] = sum[i - 1] + a[i] - x; //判断在某一区间内是否存在符合条件的值
}
deque<int>d;
for(int i = 1; i <= n; i ++)
{
if(i >= s)
{
while(!d.empty() && sum[i - s] < sum[d.back()]) // 维护队列单调性
d.pop_back();
d.push_back(i - s);
}
if(!d.empty() && d.front() < i - t)//左端点离当前距离大于t,即长度超过了最大值
d.pop_front();
if(!d.empty() && sum[i] - sum[d.front()] >= 0)// 说明满足条件
return true;
}
return false;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cin >> n >> s >> t;
double maxs = -99999999,minn = 0x3f3f3f3f;
for(int i = 1; i <= n; i ++)
{
cin >> a[i];
maxs = max(maxs , a[i]);
minn = min(minn , a[i]);//求出要二分的区间
}
double l = minn , r = maxs;
//cout<< l << " " <<r <<endl;
while(r - l > 1e-4)
{
double mid = ( l + r ) / 2;
if(check(mid))
l = mid;
else
r = mid;
}
printf("%.3lf",l);
return 0;
}