二叉树的性质证明

二叉树的概念

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2 k − 1 2^k - 1 2k1 ,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
    二叉树

二叉树的性质

1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 2 i − 1 2^{i-1} 2i1 个结点.

证明:
在这里插入图片描述
-

2. 若规定根结点的层数为1,则深度为h的二叉树的最大结点数是 2 h − 1 2^h-1 2h1.

证明:
前提条件:
一个深度为 ( h ) 的满二叉树在每一层都有最大数量的结点,即第 i i i 层有 2 i − 1 2^{i-1} 2i1个结点 i i i从 1 开始计数,即根结点所在的层为第一层。

归纳假设:

假设对于任意正整数 ( k < h ),深度为 ( k ) 的二叉树的最大结点数为 ( 2^k - 1 )。

归纳步骤:

  • 我们知道深度为 h h h的满二叉树的第 i i i层的结点数为 2 i − 1 2^{i-1} 2i1。那么整个树的最大结点数可以表示为:

    S = 2 0 + 2 1 + 2 2 + ⋯ + 2 h − 1 S = 2^0 + 2^1 + 2^2 + \cdots + 2^{h-1} S=20+21+22++2h1

这是一个等比数列的求和问题,其中首项 a 1 = 2 0 = 1 a_1 = 2^0 = 1 a1=20=1,公比 q = 2 q = 2 q=2,项数 n = h n = h n=h

等比数列的求和公式为:
S = a 1 ( 1 − q n ) 1 − q S = \frac{a_1(1-q^n)}{1-q} S=1qa1(1qn)

a 1 = 1 a_1 = 1 a1=1, q = 2 q = 2 q=2, n = h n = h n=h 代入得:
S = 1 ( 1 − 2 h ) 1 − 2 = 2 h − 1 S = \frac{1(1-2^h)}{1-2} = 2^h - 1 S=121(12h)=2h1

因此,深度为 h h h 的二叉树的最大结点数为 2 h − 1 2^h - 1 2h1

用错位相减法求和,我们可以这样:

假设 S S S为整个二叉树的最大结点数,那么可以写出两个等式:

S = 2 0 + 2 1 + 2 2 + ⋯ + 2 h − 2 + 2 h − 1 S = 2^0 + 2^1 + 2^2 + \cdots + 2^{h-2} + 2^{h-1} S=20+21+22++2h2+2h1

2 S = 2 1 + 2 2 + 2 3 + ⋯ + 2 h − 1 + 2 h 2S = 2^1 + 2^2 + 2^3 + \cdots + 2^{h-1} + 2^h 2S=21+22+23++2h1+2h

现在,我们从 2 S 2S 2S中减去 S S S

2 S − S = ( 2 1 + 2 2 + 2 3 + ⋯ + 2 h − 1 + 2 h ) − ( 2 0 + 2 1 + 2 2 + ⋯ + 2 h − 2 + 2 h − 1 ) 2S - S = (2^1 + 2^2 + 2^3 + \cdots + 2^{h-1} + 2^h) - (2^0 + 2^1 + 2^2 + \cdots + 2^{h-2} + 2^{h-1}) 2SS=(21+22+23++2h1+2h)(20+21+22++2h2+2h1)
化简:
S = 2 h − 1 S = 2^h - 1 S=2h1

因此,错位相减法,得到了相同的结论。

3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n 0 n_0 n0 , 度为2的分支结点个数为 n 2 n_2 n2 ,则有 n 0 n_0 n0 = n 2 n_2 n2 + 1.

证明:

  1. 从结点的角度考虑:

    • 一棵二叉树包含度为0、1或2的结点。
    • 设度为0的结点数量为 n 0 n_0 n0,度为1的结点数量为 n 1 n_1 n1,度为2的结点数量为 n 2 n_2 n2
    • 总结点数 N N N 是这些结点数量之和,即 N = n 0 + n 1 + n 2 N = n_0 + n_1 + n_2 N=n0+n1+n2。(方程①)
  2. 从边的角度考虑:

    • 一棵含有 N N N 个结点的二叉树总共有 N − 1 N - 1 N1 条边。
    • 每个度为1的结点产生1条边,每个度为2的结点产生2条边,度为0的结点不产生边。
    • 所以总边数为 n 1 + 2 ⋅ n 2 n_1 + 2 \cdot n_2 n1+2n2
    • 根据边的数量可得方程 N − 1 = n 1 + 2 ⋅ n 2 N - 1 = n_1 + 2 \cdot n_2 N1=n1+2n2。(方程②)
  3. 结合① 和 ②得:

    • 将方程①和方程②联立起来,我们可以消去 n 1 + n 2 n_1 + n_2 n1+n2
      N = n 0 n_0 n0 + n 1 n_1 n1 + n 2 n_2 n2
    • N N N代入第二个方程,我们得到:
      n 0 n_0 n0 + n 1 n_1 n1 + n 2 n_2 n2 = n 1 n_1 n1 + 2 * n 2 n_2 n2 - 1
      n 0 n_0 n0 = n 2 n_2 n2 + 1

因此,得出结论:在一棵二叉树中,度为0的结点数量(叶子结点的数量)总是比度为2的结点的数量多1个。

4. 若规定根结点的层数为1,具有n个结点的满二叉树的深度,h= l o g 2 ( n + 1 ) log_2(n+1) log2(n+1).

证明:
由第二个性质可知:深度为h的二叉树的最大结点数是 2 h − 1 2^h-1 2h1.
所以,n = 2 h − 1 2^h-1 2h1,
解得:h= l o g 2 ( n + 1 ) log_2(n+1) log2(n+1)

5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点有:

  1. 若i>0,i位置结点的双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
  2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
  3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值