P1075 [NOIP2012 普及组] 质因数分解

文章讲述了如何通过编程解决一个数学问题,即给定一个正整数n,它是两个不同质数的乘积,要求找出其中较大的质数。方法是找到n的最小约数(除了1),然后用n除以该约数得到答案。代码示例展示了C++实现。
摘要由CSDN通过智能技术生成

题目传送门

题目描述

已知正整数 n 是两个不同的质数的乘积,试求出两者中较大的那个质数。

输入格式

输入一个正整数 n。

输出格式

输出一个正整数 p,即较大的那个质数。

输入输出样例

输入 #1

21

输出 #1

7

说明/提示

1≤n≤2×109

NOIP 2012 普及组 第一题

思路 

大多数人首先想到的就是for循环从(n - 1)一直枚举下去

但大家应该知道,约数是成对出现的(平方数除外),也就是说,一个数的第一小约数乘第一大约数相乘等于这个数,第二小约数乘第二大约数相乘也依然等于这个数!

因此,只要找出n的最小约数(1除外),再用n除以这个数,就能得到结果了!

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int n;
    cin>>n;
    for (int i=2;i<=n;i++)
    {
        if (n%i==0)
        {
            cout <<n/i;
            break;
        }
    }
    return 0;
}

   如有错误,欢迎大家评论区指出!感谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值