感兴趣的同学可以CSDN查看个人简介,获取相关数据集噢。光伏电池作为太阳能发电系统的核心组件,其性能和可靠性直接影响到整个系统的效率和寿命。在光伏电池的生产、运输、安装和使用过程中,可能会出现各种缺陷,如隐裂、断栅、热斑等。这些缺陷会导致电池的光电转换效率下降,甚至可能引发故障,影响整个光伏阵列的性能。
通过及时检测光伏电池的缺陷,可以提高电池的光电转换效率,延长其使用寿命,从而提高整个光伏系统的发电效率和可靠性。自动化的异常检测技术可以减少人工检测的需求,降低维护成本和时间。例如,基于深度学习的检测模型可以在大规模光伏电池图像数据集上实现快速准确的检测。因此,对光伏电池进行有效的异常检测,以便及时发现和修复缺陷,具有重要的研究背景。
01
—
数据集简介
该数据集由河北工业大学和北京航空航天大学联合发布的,是用于对光伏电池异常缺陷检测方法进行基准测试的数据集。数据集构建了一个多晶太阳能电池光伏电致发光异常检测(PVEL-AD)数据集,包含36543幅具有各种内部缺陷和非均匀背景的近红外图像。领域研究者们可以基于该数据集对深度学习目标检测方法进行综合评价,在该数据集上的评价结果也可以为后续研究者进行实验比较提供初始基准。
据我们所知,这是第一个用于光伏太阳能电池异常检测的公共数据集,该数据集提供了盒状地面真实图像,并侧重于工业应用。此外,该数据集还可用于多种计算机视觉任务的评估,如少镜头检测、单类分类和异常生成等。
02
—
数据详情
PVEL-AD包含36,543张具有各种内部缺陷和异构背景的近红外图像,其中包含1类无异常图像和具有12个不同类别的异常缺陷图像,例如裂纹(线状和星状)、断栅、黑芯、未对准、粗线、划痕、碎片、断角和材料缺陷。此外,数据集还为12种类型的缺陷提供了40358+个真实标注框用于缺陷检测。这是一项长尾目标检测任务,对智能制造具有挑战性和重要意义。
03
—
数据要求
使用该数据集进行实验可以通过计算平均精度(mAP)进行评估,同时可以考虑PVELAD数据集的注释过程(平均值由每个类mAPs接管)。该指标计算公式可参考https://github.com/binyisu/PVEL-AD项目中的AP50-5-95.py,最终的mAP计算为8个类的平均AP。该度量也作为了Tensorflow对象检测API的一部分实现。对于测试集中的每个图像,必须预测描述图像中对象的框列表,每个框都被描述为文件应该包含一个头并且具有以下格式:
``` ImageID,PredictionString ImageID,{Label Confidence XMin YMin XMax YMax} {...} ```
所有研究人员使用该数据集时,可以将以下论文作为引用:
[1] Binyi Su, Zhong Zhou, Haiyong Chen, “PVEL-AD: A Large-Scale Open-World Dataset for Photovoltaic Cell Anomaly Detection,” IEEE Trans. Ind. Inform., DOI (identifier) :10.1109/TII.2022.3162846
[2] B. Su, H. Chen, Y. Zhu, W. Liu and K. Liu, ``Classification of Manufacturing Defects in Multicrystalline Solar Cells With Novel Feature Descriptor,'' IEEE Trans. Instrum. Meas., vol. 68, no. 12, pp. 4675--4688, Dec. 2019.
[3] B. Su, H. Chen, and P. Chen, ``Deep Learning-Based Solar-Cell Manufacturing Defect Detection With Complementary Attention Network,'' IEEE Trans. Ind. Inform., vol. 17, no. 6, pp. 4084--4095, Jun. 2021.
[4] B. Su, H. Chen, and Z. Zhou, ``BAF-Detector: An Efficient CNN-Based Detector for Photovoltaic Cell Defect Detection,'' IEEE Trans. Ind. Electron., vol. 69, no. 3, pp. 3161-3171, Mar. 2022.