感兴趣的同学可以CSDN查看个人简介,获取相关数据集噢。随着电动汽车市场的迅速扩张,锂电池作为核心动力源,其性能、安全和寿命成为关键考量因素。锂离子电池性能是一个复杂的化学和电化学反应过程,涉及材料、界面到多孔电极等多个层面。数据科学与电池物质科学的交叉为电池状态建模、性能管理和寿命预测提供了新途径。
机器学习方法在处理复杂数据、寻找规律方面发挥重要作用,有助于解决电池管理系统(BMS)中的核心难题,如精准估算电池的充电状态(SOC)、健康状态(SOH)、优化热管理策略及有效预测电池老化进程。此外,大规模锂离子电池数据集为研究提供了丰富的实际运行数据,可用于电池健康状态估计、剩余寿命预测、故障诊断等领域,对提升电池系统的整体性能、可靠性及安全性具有重要意义。锂电池技术的发展,包括容量与功率密度提升、成本降低和安全性提高,对新能源汽车产业的可持续发展至关重要。
01
—
数据集描述
本数据集所有数据均来源于真实环境下实车运行的锂电池数据,数据集可用于锂电池健康状态估计、剩余寿命预测、故障诊断等领域。本数据集仅限学术研究实验。以下是本数据集的详细信息:
1. 数据来源
数据来源于运营车辆(当前已停产),共计300辆,里程范围0-50万公里,运行周期范围0.5-4年,涵盖了车辆充电、放电、静置等所有行车工况信息。
2. 数据字段
具体包括以下13个字段:
terminaltime:终端时间
soc:电量
speed:车速
totaldo meter:累计行驶里程
chargestatus:充放电状态
totalvoltage:总电压
totalcurrent:总电流
minvoltagebattery:最小单体电压
maxvoltagebattery:最大单体电压
mintemperaturevalue:最小传感器温度
maxtemperaturevalue:最大传感器温度
batteryvoltage:单体电压列表
probetemperatures:传感器温度列表
3. 数据统计
数据采样频率为10S/帧,数据样本共计约8.5亿帧,数据压缩前约581GB,压缩后约72GB。
02
—
数据集下载
数据以CSV格式文件存储。数据集提供了样例数据集(100MB)下载链接和全量数据集(72GB)下载链接。欢迎在CC BY-NV-SA 4.0许可下分享此数据集用于行业前沿研究。如果数据集有助于您的研究工作,请您在出版物的适当位置作引用。引用参考示例如下:
[1]. 智能汽车安全技术全国重点实验室(IVST), 新能源汽车大规模锂离子电池数据集,2024-10-12,http://ivstskl.changan.com.cn/?p=2697
03
—
数据集其它
A、数据用途
三元锂离子电池(Ternary Lithium Battery)
全生命周期管理(Full Life Cycle)
健康状态估计(State of Health Estimation,SOH)
荷电量估计(State of Charge Estimation,SOC)
B、数据发布单位
智能汽车安全技术全国重点实验室(State Key Laboratory of Intelligent Vehicle Safety Technology (IVST))