思路:动态规划
定义dp[l][i]为以i结尾长度为l的方案数
初始化dp[1][i]为1,表示不管以什么结尾长度为一的方案数总是为一的
当i为奇数的时候正向遍历,是利用了dp的无后效性,在dp[i][j]后面的j可以直接用,而不需要重新算一遍
当i为偶数的时候则反向遍历,也是利用了dp的无后效性,在dp[i][j]前面的j可以直接用,也不需要重新算一遍
最后将长度为m的dp[m][i]全部遍历一遍,加到所求答案方案数中,当然别忘记取模
C++代码:
#include <iostream>
using namespace std;
int m,n;
const int N=10000;
int dp[1005][1005];//dp[l][i]表示以i结尾长度为l的方案有多少
int main()
{
// 请在此输入您的代码
cin>>m>>n;
for(int i=1;i<=n;i++)
dp[1][i]=1;
for(int i=2;i<=m;i++){
if(i%2==1){
for(int j=2;j<=n+1;j++){
dp[i][j]=(dp[i-1][j-1]+dp[i][j-1])%N;
}
}
else{
for(int j=n-1;j>=0;j--){
dp[i][j]=(dp[i-1][j+1]+dp[i][j+1])%N;
}
}
}
int ans=0;
for(int i=1;i<=n;i++){
ans+=dp[m][i];
}
cout<<ans%N;
return 0;
}