AcWing—最短Hamilton路径

91. 最短Hamilton路径 - AcWing题库

所需知识:二进制状态压缩,动态规划

假设现在有六个点:

j/i012345
0024513
1206531
2460832
3558054
4133503
5312430

起点为0终点为5,假设现在走到终点前一点,不妨设该点为4,即现在要确定从0到4,最少要走多远,起点为1终点为4,现有六条路可以选择:

first: 0–>1–>2–>3–>4 距离:21
second: 0–>1–>3–>2–>4 距离:18
third: 0–>2–>1–>3–>4 距离:17
fourth: 0–>2–>3–>1–>4 距离:20
fifth: 0–>3–>1–>2–>4 距离:19
sixth: 0–>3–>2–>1–>4 距离:22

因为4到5的距离是确定的唯一值,所以0->4的最短路径即为0->5的最短路径,即为此例中的third。

所以得出结论,只要确定最后一点的前一点的最短路径即为答案所求最短路径,因此dp的思路有了,但怎么表示走过的路径还是一个问题,今天刚学了一种方法:状态压缩,用一个数的二进制表示是否走过这个点(1表示走过,0表示没走过)

状态转移方程式:f[i][j]=min(f[i][j],f[i-(1<<j)][k]+a[k][j]);

C++代码:

#include <iostream>
#include <cstring>

using namespace std;

const int N = 20,M=1<<N;
int a[N][N];
int n;
int f[M][N];
int main()
{
    cin>>n;
    for (int i = 0; i < n; i ++ ){
        for (int j = 0; j < n; j ++ ){
            cin>>a[i][j];
        }
    }
    memset(f,0x3f,sizeof f);
    f[1][0]=0;
    for (int i = 0; i <(1<<n); i ++ ){
        for (int j = 0; j < n; j ++ ){
            if((i>>j)&1)//判断某一个数的第j为是不是1(有没有经过j这个点)
            for (int k = 0; k < n; k ++ ){
                if((i>>k)&1)//(有没有经过k这个点)
                   f[i][j]=min(f[i][j],f[i-(1<<j)][k]+a[k][j]);
            }
        }
    }
    cout<<f[(1<<n)-1][n-1]<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值