自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 动手学深度学习——深度学习计算(学习记录)

每个单独的层接收输入(由前一层提供), 生成输出(到下一层的输入),并且具有一组可调参数, 这些参数根据从下一层反向传播的信号进行更新。它的任何子类都必须定义一个将其输入转换为输出的前向传播函数, 并且必须存储任何必需的参数,最后,为了计算梯度,块必须具有反向传播函数。此外,当运行一个耗时较长的训练过程时, 最佳的做法是定期保存中间结果, 以确保在服务器电源被不小心断掉时,我们不会损失几天的计算结果。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。

2024-05-15 00:45:17 1038

原创 动手学深度学习——多层感知机(学习笔记)

线性模型可能会出错:线性意味着单调假设, 任何特征的增大都会导致模型输出的增大(对应的权重为正),或者导致模型输出的减小(对应的权重为负)。而我们也可以很容易找出违反单调性的例子,例如对猫狗的图像进行分类,在这里我们的数据会有一种表示,这种表示会考虑到我们在特征之间的相关交互作用。可通过在网络中加入一个或多个隐藏层来克服线性模型的限制,使其能处理更普遍的函数关系类型。最简单的方法是将许多全连接层堆叠在一起,形成多层感知机(multilayer perceptron)架构,缩写为MLP。

2024-04-28 20:57:20 1887

原创 数字图像处理实验(一)——图像基本变换

(1)imread函数功能:读取图像文件调用格式:A = imread(filename, fmt)filename为图像文件名,fmt为文件的扩展名。若文件不在当前目录或不在Matlab目录下,则需要列全文件路径。(2)imshow函数功能:显示图像。调用格式:imshow(I,n):显示灰度图像I,n为要显示图像的灰度等级,整数,默认为256。

2024-04-14 19:06:16 2088 1

原创 动手学深度学习——线性神经网络(学习记录)

接下来我们实现一个训练函数, 它会在train_iter访问到的训练数据集上训练一个模型net。如果X是一个形状为(2, 3)的张量,我们对列进行求和, 则结果将是一个具有形状(3,)的向量。在展示训练函数的实现之前,我们定义一个在动画中绘制数据的实用程序类Animator, 它能够简化本书其余部分的代码。同样,对于任意数据迭代器data_iter可访问的数据集, 我们可以评估在任意模型net的精度。作为一个从零开始的实现,我们使用小批量随机梯度下降来优化模型的损失函数,设置学习率为0.1。

2024-04-07 09:14:13 2019 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除