动手学深度学习——深度学习计算(学习记录)

动手学深度学习——深度学习计算(学习记录)

1.层和块

对于上一节学习的多层感知机而言,整个模型接受原始输入(特征),生成输出(预测), 并包含一些参数(所有组成层的参数集合)。每个单独的层接收输入(由前一层提供), 生成输出(到下一层的输入),并且具有一组可调参数, 这些参数根据从下一层反向传播的信号进行更新。这是整个模型及其组成层的架构。而为了实现复杂的网络,我们引入了神经网络块的概念。
块(block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块进行抽象的一个好处是可以将一些块组合成更大的组件, 这一过程通常是递归的。通过定义代码来按需生成任意复杂度的块, 我们可以通过简洁的代码实现复杂的神经网络。
在这里插入图片描述
从编程的角度来看,块由类(class)表示。 它的任何子类都必须定义一个将其输入转换为输出的前向传播函数, 并且必须存储任何必需的参数,最后,为了计算梯度,块必须具有反向传播函数。注意,有些块不需要任何参数。 在定义我们自己的块时,由于自动微分提供了一些后端实现,我们只需要考虑前向传播函数和必需的参数。
下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。

import torch
from torch import nn
from torch.nn import functional as F

net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

X = torch.rand(2, 20)
net(X)

tensor([[ 0.0343, 0.0264, 0.2505, -0.0243, 0.0945, 0.0012, -0.0141, 0.0666,
-0.0547, -0.0667],
[ 0.0772, -0.0274, 0.2638, -0.0191, 0.0394, -0.0324, 0.0102, 0.0707,
-0.1481, -0.1031]], grad_fn= < A d d m m B a c k w a r d 0 > <AddmmBackward0> <AddmmBackward0>)

nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 它维护了一个由Module组成的有序列表。 注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。 另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。 这实际上是net.call(X)的简写。 这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。
1.1自定义块
每个块必须提供的基本功能:

1.将输入数据作为其前向传播函数的参数。

2.通过前向传播函数来生成输出。请注意,输出的形 状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。

3.计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。

4.存储和访问前向传播计算所需的参数。

5.根据需要初始化模型参数。

下面我们从零开始编写一个块,它包含一个具有256个隐藏单元的隐藏层和一个10维输出层的多层感知机。
(注意:下面的MLP类继承了表示块的类。 我们的实现只需要提供自己的构造函数(Python中的__init__函数)和前向传播函数)

class MLP(nn.Module):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层
        self.out = nn.Linear(256, 10)  # 输出层

    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

net = MLP()
net(X)

前向传播函数,它以X作为输入, 计算带有激活函数的隐藏表示,并输出其未规范化的输出值。

定制的__init__函数通过super().init() 调用父类的__init__函数, 省去了重复编写模版代码的痛苦。

实例化两个全连接层self.hidden和self.out,系统将自动生成反向传播函数或参数初始化。

1.2顺序块
现在我们可以更仔细地看看Sequential类是如何工作的, 回想一下Sequential的设计是为了把其他模块串起来。 为了构建我们自己的简化的MySequential, 我们只需要定义两个关键函数:

一种将块逐个追加到列表中的函数;

一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。

下面的MySequential类提供了与默认Sequential类相同的功能。

在这里插入代码片class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for idx, module in enumerate(args):
            # 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
            # 变量_modules中。_module的类型是OrderedDict
            self._modules[str(idx)] = module

    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X

__init__函数将每个模块逐个添加到有序字典_modules中,其主要优点是在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。
当MySequential的前向传播函数被调用时, 每个添加的块都按照它们被添加的顺序执行。
现在使用MySequential类重新实现多层感知机。

net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

tensor([[ 2.2759e-01, -4.7003e-02, 4.2846e-01, -1.2546e-01, 1.5296e-01,
1.8972e-01, 9.7048e-02, 4.5479e-04, -3.7986e-02, 6.4842e-02],
[ 2.7825e-01, -9.7517e-02, 4.8541e-01, -2.4519e-01, -8.4580e-02,
2.8538e-01, 3.6861e-02, 2.9411e-02, -1.0612e-01, 1.2620e-01]],
grad_fn= < A d d m m B a c k w a r d 0 > <AddmmBackward0> <AddmmBackward0>)

1.3在前向传播函数中执行代码
到目前为止, 我们网络中的所有操作都对网络的激活值及网络的参数起作用。 然而,有时我们可能希望合并既不是上一层的结果也不是可更新参数的项, 我们称之为常数参数(constant parameter)。 例如,我们需要一个计算函数𝑓(𝑥,𝑤)=𝑐⋅𝑤⊤𝑥的层, 其中x是输入,w是参数,c是某个在优化过程中没有更新的指定常量。 因此我们实现了一个FixedHiddenMLP类。

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 不计算梯度的随机权重参数。因此其在训练期间保持不变
        self.rand_weight = torch.rand((20, 20), requires_grad=False)
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        # 使用创建的常量参数以及relu和mm函数
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数
        X = self.linear(X)
        # 控制流
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()
        ```
我们实现了一个隐藏层, 其权重(self.rand_weight)在实例化时被随机初始化,之后为常量。 这个权重不是一个模型参数,因此它永远不会被反向传播更新。 然后,神经网络将这个固定层的输出通过一个全连接层。

我们可以混合搭配各种组合块的方法。 在下面的例子中,我们以一些想到的方法嵌套块。

```python
class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 定义一个由两个全连接层和ReLU激活函数组成的神经网络模型net
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                 nn.Linear(64, 32), nn.ReLU())
        # 定义一个单独的全连接层linear,将维度从32转换为16
        self.linear = nn.Linear(32, 16)
    # 定义前向传播函数,将输入数据X经过net和linear进行前向传播
    def forward(self, X):
        return self.linear(self.net(X))
# 创建一个序列化神经网络模型chimera,由NestMLP模型、一个全连接层和FixedHiddenMLP模型组成
chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
# 对输入数据X进行前向传播,依次经过NestMLP模型、全连接层和FixedHiddenMLP模型,得到输出结果
chimera(X)

tensor(0.2183, grad_fn= < S u m B a c k w a r d 0 > <SumBackward0> <SumBackward0>)

2.参数管理

下面我们将介绍操作参数的具体细节,包括以下内容:

  • 访问参数,用于调试、诊断和可视化;
  • 参数初始化;
  • 在不同模型组件间共享参数
    首先看一下具有单隐藏层的多层感知机。
import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

tensor([[-0.0970],
[-0.0827]], grad_fn= < A d d m m B a c k w a r d 0 > <AddmmBackward0> <AddmmBackward0>)

2.1参数访问
通过Sequential类定义模型时,可以通过索引来访问模型的任意层。如下,可以检查第二个全连接层的参数。

print(net[2].state_dict())

OrderedDict([(‘weight’, tensor([[-0.0427, -0.2939, -0.1894, 0.0220, -0.1709, -0.1522, -0.0334, -0.2263]])), (‘bias’, tensor([0.0887]))])

2.1.1目标参数
要对参数执行任何操作,首先需要访问底层的数值。 下面的代码从第二个全连接层(即第三个神经网络层)提取偏置, 提取后返回的是一个参数类实例,并进一步访问该参数的值。

# 打印第三个层的偏置项的类型
print(type(net[2].bias))
# 打印第三个层的偏置项的值
print(net[2].bias)
# 打印第三个层的偏置项的数据
print(net[2].bias.data)

<class ‘torch.nn.parameter.Parameter’>
Parameter containing:
tensor([0.0887], requires_grad=True)
tensor([0.0887])

2.1.2. 一次性访问所有参数
当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂, 因为我们需要递归整个树来提取每个子块的参数。 下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。

# 打印神经网络模型net中第一个子模块中所有参数的名称和形状
print(*[(name, param.shape) for name, param in net[0].named_parameters()])
# 打印神经网络模型net中所有参数的名称和形状
print(*[(name, param.shape) for name, param in net.named_parameters()])

(‘weight’, torch.Size([8, 4])) (‘bias’, torch.Size([8]))
(‘0.weight’, torch.Size([8, 4])) (‘0.bias’, torch.Size([8])) (‘2.weight’, torch.Size([1, 8])) (‘2.bias’, torch.Size([1]))

另一种访问网络参数的方式,如下所示

net.state_dict()['2.bias'].data

tensor([0.0887])
vnet.state_dict()是一个用于获取神经网络模型vnet中所有参数及其对应数值的字典。这个方法返回的字典包含了模型中所有参数的名称作为键,以及对应参数的数值作为值。

2.1.3. 从嵌套块收集参数
如果我们将多个块相互嵌套,参数命名约定是如何工作的。 我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。

# 定义一个包含两个线性层和ReLU激活函数的Sequential模块,作为一个基本块
def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())
# 定义一个包含多个block1()基本块的Sequential模块
def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}', block1())
    return net
# 构建神经网络模型rgnet,包含了多个block2()基本块和一个线性层
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

运行结果:

tensor([[0.2596],
[0.2596]], grad_fn= < A d d m m B a c k w a r d 0 > <AddmmBackward0> <AddmmBackward0>)

设计了网络后,它是如下工作的:

print(rgnet)

运行结果:

Sequential(
(0): Sequential(
(block 0): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
(block 1): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
(block 2): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
(block 3): Sequential(
(0): Linear(in_features=4, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=4, bias=True)
(3): ReLU()
)
)
(1): Linear(in_features=4, out_features=1, bias=True)
)

因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet[0][1][0].bias.data

运行结果:

tensor([ 0.1999, -0.4073, -0.1200, -0.2033, -0.1573, 0.3546, -0.2141, -0.2483])

2.2. 参数初始化
深度学习框架提供默认随机初始化, 也允许我们创建自定义初始化方法, 满足我们通过其他规则实现初始化权重。
2.2.1. 内置初始化
调用内置的初始化器。 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。

def init_normal(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, mean=0, std=0.01)
        nn.init.zeros_(m.bias)
net.apply(init_normal)
# 输出第一个线性层net[0]的权重和偏置项的第一个元素(第一个神经元)的数值
net[0].weight.data[0], net[0].bias.data[0]

运行结果:

(tensor([-0.0214, -0.0015, -0.0100, -0.0058]), tensor(0.))

我们还可以将所有参数初始化为给定的常数,比如初始化为1。

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)
        nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

运行结果:

(tensor([1., 1., 1., 1.]), tensor(0.))

还可以对某些块应用不同的初始化方法。 例如,下面我们使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。

def init_xavier(m):#使用Xavier均匀分布初始化权重
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)
def init_42(m):#将权重初始化为常数值42
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)

运行结果:

tensor([ 0.5236, 0.0516, -0.3236, 0.3794])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])

2.2.2. 自定义初始化
有时,深度学习框架没有提供我们需要的初始化方法。 在下面的例子中,我们使用以下的分布为任意权重参数w定义初始化方法:
在这里插入图片描述

def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape)
                        for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5

net.apply(my_init)
net[0].weight[:2]
#如果m是nn.Linear类型(即线性层),则首先打印出该线性层的名称和参数形状,并使用均匀分布在[-10, 10]范围内初始化权重。然后,将权重的绝对值大于等于5的元素保留,其他元素置零。

Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])
tensor([[5.4079, 9.3334, 5.0616, 8.3095],
[0.0000, 7.2788, -0.0000, -0.0000]], grad_fn= < S l i c e B a c k w a r d 0 > <SliceBackward0> <SliceBackward0>)

我们始终可以直接设置参数。

net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]

tensor([42.0000, 10.3334, 6.0616, 9.3095])

2.3. 参数绑定
有时我们希望在多个层间共享参数: 我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                    shared, nn.ReLU(),
                    shared, nn.ReLU(),
                    nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])

tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])
这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。

3. 自定义层
深度学习成功背后的一个因素是神经网络的灵活性: 我们可以用创造性的方式组合不同的层,从而设计出适用于各种任务的架构。
3.1. 不带参数的层
首先,我们构造一个没有任何参数的自定义层。下面的CenteredLayer类要从其输入中减去均值。 要构建它,我们只需继承基础层类并实现前向传播功能。

import torch
import torch.nn.functional as F
from torch import nn


class CenteredLayer(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, X):
        return X - X.mean()

向该层提供一些数据,验证它是否能按预期工作。

layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))

tensor([-2., -1., 0., 1., 2.])

现在,可以将层作为组件合并到更复杂的模型中。

net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())

3.2. 带参数的层
我们继续定义具有参数的层, 这些参数可以通过训练进行调整。 我们可以使用内置函数来创建参数,这些函数提供一些基本的管理功能。 比如管理访问、初始化、共享、保存和加载模型参数。 这样做的好处之一是:我们不需要为每个自定义层编写自定义的序列化程序。
现在,让我们实现自定义版本的全连接层。该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。

class MyLinear(nn.Module):
#in_units和units,分别表示输入数和输出数
    def __init__(self, in_units, units):
        super().__init__()
        self.weight = nn.Parameter(torch.randn(in_units, units))
        self.bias = nn.Parameter(torch.randn(units,))
    def forward(self, X):
     # 计算线性变换
        linear = torch.matmul(X, self.weight.data) + self.bias.data
        return F.relu(linear)

接下来,我们实例化MyLinear类并访问其模型参数。

linear = MyLinear(5, 3)
linear.weight

Parameter containing:
tensor([[ 0.1775, -1.4539, 0.3972],
[-0.1339, 0.5273, 1.3041],
[-0.3327, -0.2337, -0.6334],
[ 1.2076, -0.3937, 0.6851],
[-0.4716, 0.0894, -0.9195]], requires_grad=True)

我们可以使用自定义层直接执行前向传播计算。

linear(torch.rand(2, 5))

tensor([[0., 0., 0.],
[0., 0., 0.]])

还可以使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层。

net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))

tensor([[0.],
[0.]])

4. 读写文件
有时我们希望保存训练的模型, 以备将来在各种环境中使用(比如在部署中进行预测)。 此外,当运行一个耗时较长的训练过程时, 最佳的做法是定期保存中间结果, 以确保在服务器电源被不小心断掉时,我们不会损失几天的计算结果。 因此,需要学习如何加载和存储权重向量和整个模型。
4.1. 加载和保存张量
对于单个张量,我们可以直接调用load和save函数分别读写它们。 这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入。

import torch
from torch import nn
from torch.nn import functional as F

x = torch.arange(4)
torch.save(x, 'x-file')

现在可以将存储在文件中的数据读回内存。

x2 = torch.load('x-file')
x2

tensor([0, 1, 2, 3])

可以存储一个张量列表,然后把它们读回内存。

y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
(x2, y2)

(tensor([0, 1, 2, 3]), tensor([0., 0., 0., 0.]))

我们甚至可以写入或读取从字符串映射到张量的字典。 当我们要读取或写入模型中的所有权重时,这很方便。

mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2

{‘x’: tensor([0, 1, 2, 3]), ‘y’: tensor([0., 0., 0., 0.])}

4.2. 加载和保存模型参数
如果我们想保存整个模型,并在以后加载它们, 单独保存每个向量则会变得很麻烦。因为可能有数百个参数散布在各处。 因此,深度学习框架提供了内置函数来保存和加载整个网络。 需要注意,这将保存模型的参数而不是保存整个模型。为了恢复模型,我们需要用代码生成架构, 然后从磁盘加载参数。
从多层感知机开始尝试。

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))

net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

接下来,我们将模型的参数存储在一个叫做“mlp.params”的文件中。

torch.save(net.state_dict(), 'mlp.params')

为了恢复模型,我们实例化了原始多层感知机模型的一个备份。 这里我们不需要随机初始化模型参数,而是直接读取文件中存储的参数。

clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

MLP(
(hidden): Linear(in_features=20, out_features=256, bias=True)
(output): Linear(in_features=256, out_features=10, bias=True)
)

由于两个实例具有相同的模型参数,在输入相同的X时, 两个实例的计算结果应该相同。

Y_clone = clone(X)
Y_clone == Y

tensor([[True, True, True, True, True, True, True, True, True, True],
[True, True, True, True, True, True, True, True, True, True]])

  • 24
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值