动手学深度学习——线性神经网络(学习记录)

动手学深度学习——线性神经网络(学习记录)

线性神经网络

前言:
该文用作深度学习笔记记录,本章将介绍神经网络的整个训练过程,主要体现在线性回归和softmax回归的实现
1、线性回归(linear regression)
(1)损失函数(loss function)

  • 能够量化目标的实际值与预测值之间的差距

  • 通常选择非负数作为损失,数值越小表示损失越小

  • 最常用的损失函数是平方误差函数(公式如下)
    在这里插入图片描述

  • 为了度量模型在整个数据集上的质量,我们需计算在训练集n个样本上的损失均值(也等价于求和)
    在这里插入图片描述

  • 训练模型时,我们希望能够找到一组参数可以最小化在所有训练样本上的总损失,如下
    在这里插入图片描述
    (2)解析解(analytical solution)

  • 一个简单地表达线性回归的解的公式

  • 将偏置b合并到参数w当中,再将损失函数关于w的导数设为0,推导出解析解在这里插入图片描述
    (3)随机梯度下降
    小批量随机梯度下降(minibatch stochastic gradient descent)

  • 初始化模型参数的值

  • 随机抽取小批量样本,按图正向计算

  • 反向传播得到导数值,在负梯度的方向上更新参数

  • 不断迭代抽取小样本后的步骤(公式如下)
    在这里插入图片描述
    2、线性回归的从零开始实现**
    整体流程如下
    在这里插入图片描述

  • 生成数据集


def synthetic_data(w, b, num_examples):  
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    #num_examples 行和 len(w) 列的正态分布随机数据
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    #在 y 上添加均值为 0,标准差为 0.01 的正态分布噪声
    return X, y.reshape((-1, 1))

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

  • 读取数据集

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    #计算特征数据的长度(即样本数量)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    #打乱顺序
    for i in range(0, num_examples, batch_size):
     #以batch_size为步长进行迭代,直到遍历完所有的样本
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]
  • 初始化模型参数
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
  • 定义模型
def linreg(X, w, b):
    """线性回归模型"""
    return torch.matmul(X, w) + b
  • 定义损失函数
def squared_loss(y_hat, y): 
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
  • 定义优化算法
    基于小批量随机梯度下降实现
def sgd(params, lr, batch_size):  #@save
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()
  • 训练过程
    在这里插入图片描述
lr = 0.03
#学习率
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

3、线性回归的简洁实现
基于成熟的开源框架,自动化基于梯度的学习算法中重复性的工作

  • 读取数据集
    调用框架中现有的API来读取数据
def load_array(data_arrays, batch_size, is_train=True):  #@save
    """构造一个PyTorch数据迭代器"""
    #布尔值is_train表示是否希望数据迭代器对象在每个迭代周期内打乱数据
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size = 10
data_iter = load_array((features, labels), batch_size)
 #将features和labels作为API的参数传递,并通过数据迭代器指定batch_size
  • 定义模型
# nn是神经网络的缩写
from torch import nn

net = nn.Sequential(nn.Linear(2, 1))
  • 初始化模型参数
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
  • 定义损失函数
    使用MSELoss类,也称为平方L2范数。 默认情况下,它返回所有样本损失的平均值
loss = nn.MSELoss()
  • 定义优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
  • 训练
num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X) ,y)
        trainer.zero_grad()
        #在每次迭代开始时,清除之前累积的梯度
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')
 #查看参数值
w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)

4、softmax回归的从零开始实现

  • 初始化模型参数
#权重将构成一个784*10的矩阵, 偏置将构成一个1*10的行向量
num_inputs = 784
num_outputs = 10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

-定义softmax操作
回顾一下sum运算符如何沿着张量中的特定维度工作
如果X是一个形状为(2, 3)的张量,我们对列进行求和, 则结果将是一个具有形状(3,)的向量。 调用sum运算符时,我们可以指定保持在原始张量的轴数,而不折叠求和的维度。 这将产生一个具有形状(1, 3)的二维张量。

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)
  • 定义模型
def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
    #使用reshape函数将每张原始图像展平为向量
  • 定义损失函数
    我们创建一个数据样本y_hat,其中包含2个样本在3个类别的预测概率, 以及它们对应的标签y。 有了y,我们知道在第一个样本中,第一类是正确的预测; 而在第二个样本中,第三类是正确的预测。
y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]

实现交叉熵损失函数

def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])
cross_entropy(y_hat, y)
  • 分类精度
    给定预测概率分布y_hat,当我们必须输出硬预测(hard prediction)时, 我们通常选择预测概率最高的类。
def accuracy(y_hat, y):  #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
        #使用argmax获得每行中最大元素的索引来获得预测类别
    cmp = y_hat.type(y.dtype) == y
    #将y_hat的数据类型转换为与y的数据类型一致
    return float(cmp.type(y.dtype).sum())
    #最后求和会得到正确预测的数量
#计算分类精度
accuracy(y_hat, y) / len(y)

同样,对于任意数据迭代器data_iter可访问的数据集, 我们可以评估在任意模型net的精度。

def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
   #创建存储可以累积两个值的metric
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]
    #返回总的正确预测数量与总的预测数量之间的比值,模型的精度
  • 训练
    updater是更新模型参数的常用函数,它接受批量大小作为参数。 它可以是d2l.sgd函数,也可以是框架的内置优化函数。
def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

在展示训练函数的实现之前,我们定义一个在动画中绘制数据的实用程序类Animator, 它能够简化本书其余部分的代码。

class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)

接下来我们实现一个训练函数, 它会在train_iter访问到的训练数据集上训练一个模型net。 该训练函数将会运行多个迭代周期(由num_epochs指定)。 在每个迭代周期结束时,利用test_iter访问到的测试数据集对模型进行评估。 我们将利用Animator类来可视化训练进度。

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        #调用 train_epoch_ch3进行批量数据前向传播,求导,更新参数,最终返回损失精度与模型准确精度
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc
    #assert 为断言句  assert condition,expression 类似 if not condition: expression\n
    #如果不满足 condition  直接中断程序,在终端报出expression\n
    #举例: assert train_loss \u003C 0.5, train_loss ||if train_loss>=0.5 中断运行并报出 train_loss,else 继续向下运行

作为一个从零开始的实现,我们使用小批量随机梯度下降来优化模型的损失函数,设置学习率为0.1

lr = 0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

现在,我们训练模型10个迭代周期。 请注意,迭代周期(num_epochs)和学习率(lr)都是可调节的超参数。 通过更改它们的值,我们可以提高模型的分类精度。

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

结果:
在这里插入图片描述

  • 预测
def predict_ch3(net, test_iter, n=6):  #@save
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    #获取真实标签对应的文字标签
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    #获取预测标签对应的文字标签
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    #将真实的标签和预测的标签组合成字符串,第一行是真实标签,第二行是预测标签
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

结果:
在这里插入图片描述
此文章旨在作为学习笔记,方便回忆巩固,也用于详细学习整个训练过程。作为初学者水平有限,如有错误请指正

  • 28
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值