Java HashMap 集合的底层原理知识点详解

一、整体架构与数据结构​

Java HashMap 是实现了 Map 接口的常用集合类,以键值对(key-value)的形式存储数据,允许一个 null 键和多个 null 值,并且不保证元素的顺序。其底层数据结构在 JDK 1.8 及以后发生了重要变化,采用数组 + 链表 + 红黑树的组合结构。​

  • 数组:也被称为哈希桶(bucket array),是 HashMap 的基础结构,每个数组元素存储链表或红黑树的头节点。数组长度始终为 2 的幂次方,这样做是为了在计算元素存储位置时,能够通过位运算替代取模运算,从而提高效率。​
  • 链表:当多个元素的哈希值经过计算后,对应到数组的同一个索引位置时,就会产生哈希冲突,此时这些元素会以链表的形式存储在该索引位置。在 JDK 1.8 之前,HashMap 仅通过链表解决哈希冲突。​
  • 红黑树:在 JDK 1.8 中引入,当链表的长度达到阈值(默认为 8),并且数组长度大于等于 64 时,链表会转换为红黑树,以提高查找效率。当红黑树节点数量减少到一定程度(默认为 6)时,又会退化为链表 。
// 核心属性定义
transient Node<K,V>[] table; // 哈希桶数组
transient int size; // HashMap中存储的键值对数量
int threshold; // 扩容阈值,当size >= threshold时进行扩容
final float loadFactor; // 负载因子,默认值为0.75
static final int TREEIFY_THRESHOLD = 8; // 链表转红黑树的阈值
static final int UNTREEIFY_THRESHOLD = 6; // 红黑树转链表的阈值
static final int MIN_TREEIFY_CAPACITY = 64; // 最小树化容量

二、哈希算法与元素定位​

2.1 哈希函数​

HashMap 通过哈希函数计算键(key)的哈希值,以此来确定元素在数组中的存储位置。其哈希函数的核心代码如下:

static final int hash(Object key) {
    int h;
    return (key == null)? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
  • 若键为 null,哈希值直接返回 0。​
  • 若键不为 null,先获取键的原始哈希值key.hashCode(),然后将其高 16 位与低 16 位进行异或(^)操作。这样做的目的是为了让哈希值更均匀地分布在数组中,减少哈希冲突的发生。例如,当数组长度较小时,低 16 位对索引计算的影响较大,通过异或操作能将高 16 位的特征也融入计算,从而降低冲突概率。​

2.2 数组索引计算​

在获取到键的哈希值后,需要进一步计算其在数组中的索引位置,计算公式为:

index = (n - 1) & hash;

其中,n为数组的长度,hash为键的哈希值。该公式利用了位与(&)运算,当n为 2 的幂次方时,n - 1的二进制形式是全 1,通过位与运算能将哈希值映射到0到n - 1的范围内,从而确定元素在数组中的存储位置。这种位运算比传统的取模运算(hash % n)效率更高,因为位运算在计算机底层执行速度更快。​

三、核心方法实现原理​

3.1 put 方法​

put 方法用于向 HashMap 中插入键值对,其执行流程如下:​

  1. 首先计算键的哈希值:通过hash(key)方法计算键的哈希值。
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

检查数组是否初始化:如果哈希桶数组table为 null 或长度为 0,则调用resize()方法进行初始化。

if ((tab = table) == null || (n = tab.length) == 0)
    n = (tab = resize()).length;

计算元素在数组中的索引位置:根据哈希值计算索引i,如果该位置的数组元素为 null,则直接创建新的节点并插入。

if ((p = tab[i = (n - 1) & hash]) == null)
    tab[i] = newNode(hash, key, value, null);
  1. 如果索引位置的元素不为 null,说明发生了哈希冲突,此时分情况处理:​
  • 若该位置是链表结构:遍历链表,查找是否存在相同的键。如果找到相同的键,则更新其对应的值;如果遍历到链表末尾仍未找到相同的键,则在链表尾部插入新节点。当链表长度达到阈值TREEIFY_THRESHOLD(默认为 8),且数组长度大于等于MIN_TREEIFY_CAPACITY(默认为 64)时,将链表转换为红黑树。​
  • 若该位置是红黑树结构:直接调用红黑树的插入方法插入新节点。
else {
    Node<K,V> e; K k;
    if (p.hash == hash &&
        ((k = p.key) == key || (key != null && key.equals(k))))
        e = p;
    else if (p instanceof TreeNode)
        e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
    else {
        for (int binCount = 0; ; ++binCount) {
            if ((e = p.next) == null) {
                p.next = newNode(hash, key, value, null);
                if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                    treeifyBin(tab, hash);
                break;
            }
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k))))
                break;
            p = e;
        }
    }
    if (e != null) { // existing mapping for key
        V oldValue = e.value;
        if (!onlyIfAbsent || oldValue == null)
            e.value = value;
        afterNodeAccess(e);
        return oldValue;
    }
}

插入成功后,更新size并检查是否需要扩容:如果size大于等于threshold,则调用resize()方法进行扩容。

++modCount;
if (++size > threshold)
    resize();
afterNodeInsertion(evict);
return null;

3.2 get 方法​

get 方法用于根据键获取对应的值,其执行流程如下:​

  1. 计算键的哈希值:同样通过hash(key)方法计算。​
  2. 根据哈希值计算索引位置,获取该位置的数组元素。
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null? null : e.value;
}
  1. 如果该位置的元素为 null,说明键不存在,直接返回 null。​
  1. 如果该位置的元素不为 null,分情况查找:​
  • 若为链表结构:遍历链表,通过equals方法比较键是否相同,找到则返回对应的值;遍历完链表未找到则返回 null。​
  • 若为红黑树结构:调用红黑树的查找方法查找节点,找到则返回对应的值;未找到则返回 null。
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

四、扩容机制​

当 HashMap 中的元素数量size达到扩容阈值threshold(threshold = 数组容量 * 负载因子,负载因子loadFactor默认为 0.75)时,会触发扩容操作,将数组容量扩大为原来的 2 倍。扩容的核心方法是resize(),其主要步骤如下:​

  1. 保存旧数组的引用和相关属性,如容量oldCap和阈值oldThr。
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null)? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
  1. 计算新的数组容量和阈值:​
  • 如果旧容量为 0 且旧阈值大于 0,则新容量设为旧阈值,新阈值为旧阈值的 1.5 倍。​
  • 如果旧容量大于 0,则新容量为旧容量的 2 倍,新阈值同样为旧阈值的 2 倍。​
  • 如果旧容量和旧阈值都为 0,则使用默认的初始容量(16)和阈值(12,16 * 0.75)。
if (oldCap > 0) {
    if (oldCap >= MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return oldTab;
    }
    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
             oldCap >= DEFAULT_INITIAL_CAPACITY)
        newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
    newCap = oldThr;
else {               // zero initial threshold signifies using defaults
    newCap = DEFAULT_INITIAL_CAPACITY;
    newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}

如果新阈值为 0,则根据新容量和负载因子计算新阈值。

if (newThr == 0) {
    float ft = (float)newCap * loadFactor;
    newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY?
              (int)ft : Integer.MAX_VALUE);
}
threshold = newThr;

创建新的数组,并将旧数组中的元素重新分配到新数组中:遍历旧数组,对于每个链表或红黑树,根据元素的哈希值和新数组的容量重新计算索引位置,并将元素插入到新数组中。在重新分配过程中,如果链表长度小于等于UNTREEIFY_THRESHOLD(默认为 6),且数组长度大于等于MIN_TREEIFY_CAPACITY,则将红黑树退化为链表。

Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
    for (int j = 0; j < oldCap; ++j) {
        Node<K,V> e;
        if ((e = oldTab[j]) != null) {
            oldTab[j] = null;
            if (e.next == null)
                newTab[e.hash & (newCap - 1)] = e;
            else if (e instanceof TreeNode)
                ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
            else { // preserve order
                Node<K,V> loHead = null, loTail = null;
                Node<K,V> hiHead = null, hiTail = null;
                Node<K,V> next;
                do {
                    next = e.next;
                    if ((e.hash & oldCap) == 0) {
                        if (loTail == null)
                            loHead = e;
                        else
                            loTail.next = e;
                        loTail = e;
                    }
                    else {
                        if (hiTail == null)
                            hiHead = e;
                        else
                            hiTail.next = e;
                        hiTail = e;
                    }
                } while ((e = next) != null);
                if (loTail != null) {
                    loTail.next = null;
                    newTab[j] = loHead;
                }
                if (hiTail != null) {
                    hiTail.next = null;
                    newTab[j + oldCap] = hiHead;
                }
            }
        }
    }
}
return newTab;

理解 Java HashMap 的底层原理,对于优化代码性能、解决实际开发中的问题以及应对面试都具有重要意义。在使用 HashMap 时,开发者可以根据具体需求,合理设置初始容量和负载因子,以减少哈希冲突和扩容带来的性能损耗。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值