【关注小阿giao,带你学Spark】

Spark概述

Spark是一个用于大规模数据处理的统一计算引擎。

spark的特点

1快速

2 易用性 ØSpark支持使用ScalaPythonJavaR语言快速编写应用。同时Spark提供超过80高阶算子,使得编写并行应用程序变得容易并且可以在ScalaPythonR的交互模式下使用Spark

3 通用性 ØSpark可以与SQLStreaming及复杂的分析良好结合。Spark还有一系列的高级工具,包括Spark SQLMLlib(机器学习库)、GraphX(图计算)和Spark Streaming(流计算),并且支持在一个应用中同时使用这些组件。

4 随处运行 Ø用户可以使用Spark的独立集群模式运行Spark,也可以在EC2(亚马逊弹性计算云)、Hadoop YARN或者Apache Mesos上运行Spark。并且可以从HDFSCassandraHBaseHiveTachyon和任何分布式文件系统读取数据。

代码简洁

Spark的生态圈

Ø Spark Core

Spark的核心,提供底层框架及核心支持。

Ø BlinkDB

一个用于在海量数据上进行交互式SQL查询的大规模并行查询引擎,允许用户通过权衡数据精度缩短查询响应时间,数据的精度将被控制在允许的误差范围内。

Ø Spark SQL

可以执行SQL查询,支持基本的SQL语法和HiveQL语法,可读取的数据源包括HiveHDFS、关系数据库(如MySQL)等


了解Spark架构

基本组件:

Ø Cluster Manager

资源管理器,即在集群上获取资源的外部服务,目前主要有StandaloneSpark原生的资源管理器)和YARNHadoop集群的资源管理器)。

Ø SparkWorker

集群中任何可以运行应用程序的节点,运行一个或多个Executor进程。

Ø Cluster Manager

资源管理器,即在集群上获取资源的外部服务,目前主要有StandaloneSpark原生的资源管理器)和YARNHadoop集群的资源管理器)。

Ø SparkWorker

集群中任何可以运行应用程序的节点,运行一个或多个Executor进程。

了解Spark核心数据集RDD

Ø Spark RDD 转换和操作示例

            了解Spark核心原理

            宽依赖与窄依赖

Ø 窄依赖:表现为一个父 RDD 的分区对应于一个子 RDD 的分区或者多个父 RDD 的分区对应于一个子 RDD 的分区。
Ø 宽依赖:表现为存在一个父 RDD 的一个分区对应一个子 RDD 的多个分区。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值