P1149 [NOIP2008 提高组] 火柴棒等式
这是一道比较入门的dfs,思路也不难想到,听完别人的思路发现用递推居然可以快那么多。
题目描述
给你 n 根火柴棍,你可以拼出多少个形如 A+B=C 的等式?等式中的 A、B、C 是用火柴棍拼出的整数(若该数非零,则最高位不能是 00)。用火柴棍拼数字 0∼9 的拼法如图所示:
注意:
- 加号与等号各自需要两根火柴棍;
- 如果 A≠B,则 A+B=C 与 B+A=C 视为不同的等式(A,B,C≥0);
- n 根火柴棍必须全部用上。
输入格式
一个整数 (1≤n≤24)。
输出格式
一个整数,能拼成的不同等式的数目。
14
2
18
9
普通代码
#include<iostream>
using namespace std;
int n;
int a[10000];
int ans;
int b[10000]={6,2,5,5,4,5,6,3,7,6};
int num(int x)
{
if(b[x]>0)
{
return b[x];
}
else
{
int s=0;
while(x)
{
s+=b[x%10];
x/=10;
}
return s;
}
}
void dfs(int x,int sum)
{
if(sum>n)
{
return;
}
if(x>3)
{
if(a[1]+a[2]==a[3]&&sum==n)
{
ans++;
}
return;
}
for(int i=0;i<=1000;i++)
{
a[x]=i;
dfs(x+1,sum+num(i));
a[x]=0;
}
}
int main()
{
scanf("%d",&n);
n-=4;
dfs(1,0);
printf("%d",ans);
}
可以发现,此代码在运行最后一组大数据时用时较长,因为它每一个数字都会调用函数num进行计算,所以数据量较大时,运行会比较慢。
思考
怎么才能使它变快呢?请看以下数据:
对于66,函数num会将它分为6,6进行计算;对于665,函数num会先把它分成66,5,再将66分成6,6,更大的数据则会有更多的步骤,所以处理时间会比较长。但仔细想一想,在665第一步分成66,5时,由于66已经算出,我们可以直接用,所以我们可以用一个数组来存放已经算出的值,方便后续使用。
优化代码
#include<iostream>
using namespace std;
int n;
int a[10000];
int ans;
int b[10000]={6,2,5,5,4,5,6,3,7,6};
void dfs(int x,int sum)
{
if(sum>n)
{
return;
}
if(x>3)
{
if(a[1]+a[2]==a[3]&&sum==n)
{
ans++;
}
return;
}
for(int i=0;i<=1000;i++)
{
a[x]=i;
dfs(x+1,sum+b[i]);
a[x]=0;
}
}
int main()
{
scanf("%d",&n);
n-=4;
for(int i=10;i<=1000;i++)
{
b[i]=b[i%10]+b[i/10];
}
dfs(1,0);
printf("%d",ans);
}
可以看出,此代码在运行最后一组大数据时比上一个代码快了很多,只用了82ms。