递推的思维构建与技巧实现

递推是一种用若干步可重复运算来解决复杂问题的方法。

1.一维递推

1.1 问题描述

有一个n层的楼梯,每次只可以向上爬1层或者2层,问爬完n层共有多少种不同的方式呢?

1.2 分析

设f(n)表示n层楼总共不同的方式。
假设此时位于第i层,因为每次只能爬1层或2层,所以到第i层只有2种方式。

  • 从第i-1层爬上来。

  • 从第i-2层爬上来。

所以得到递推公式为f(n)=f(n-1)+f(n-2)。前2项之和等于第3项,其实就是斐波那契数列,1,1,2,3,5,8,13,21...

1.3 代码实现

f[0] = 1; f[1] = 1;
for (int i = 2; i < n; i++){
    f[i] = f[i - 1] + f[i - 2]
}
cout << f[n - 1] << endl;

1.4 空间优化

每一步的递推只与前2步有关,所以只需要记录前2步的方案数,用滚动数组,而不需要开O(n)的空间。
手动赋值

int f[3];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < 10; ++i) {
    f[2] = f[1] + f[0];
    f[0] = f[1];
    f[1] = f[2];
    cout << f[2] << endl;
}

取模滚动

int f[3];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < 10; ++i) {
    f[i % 3] = f[(i - 1) % 3] + f[(i - 2) % 3];
    cout << f[i % 3] << endl;
}

如果只与前一个状态有关,比如f[n]=f[n-1]+1,可以用0,1滚动,这个在动态规划中会比较常用。

int f[2], t = 0;
f[0] = 1;
for (int i = 2; i < 10; ++i) {
    t = 1 - t;
    f[t] = f[1 - t] + 1;
    cout << f[t] << endl;
}

递推和动态规划最大的区别:递推的每一步是所有方案数的加和,而动态规划在每一步递推中,需要用来选取一个最优策略。本质其实都是通过重复的小规模子问题推导出大规模的结果。

1.5 时间优化

斐波那契数列递推公式很简单,但数据很大时,效率就比较低,因为递推是O(n)复杂度。
通过矩阵公式变换可将加法变为乘法
如下将递推公式放入矩阵:\begin {bmatrix}1&1\\1&0\end {bmatrix} \times \begin{pmatrix}f(n-1) \\ f(n-2)\end{pmatrix} =\begin{pmatrix}f(n-1)+f(n-2) \\ f(n-1)\end{pmatrix} =\begin{pmatrix}f(n) \\ f(n-1)\end{pmatrix}

假设:

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值