今天博主将开始区间dp的新篇章,相较于树形dp,区间dp的理解其实较为容易。石子问题是最为经典的区间dp问题,博主将从石子问题开始帮助大家更好的理解区间dp最基本的转移思想。
1.
题目描述
有 n堆石子排成一排,每堆石子有一定的数量。现在我们要将 n 堆石子并成为一堆,每次只能合并相邻的两堆石子,合并的花费为这两堆石子的总数。经过 n−1 次合并后会成为一堆,求总的最小花费。
输入描述
第一行输入一个 n ,代表石子的数量。
第二行输入 n 个整数a1,a2,a3...an ,ai 代表第 i 堆石子的数量 。
1≤n≤200,1≤ai≤105。
输出描述
输出一个整数,表示答案。
#include <bits/stdc++.h>
using namespace std;
int a[202];
int prefix[202];
using ll=long long;
ll dp[202][202];
const long long inf=2e18;
int main()
{
int n;cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){
dp[i][j]=inf;
}
}
for(int i=1;i<=n;i++)dp[i][i]=0;
for(int i=1;i<=n;i++)prefix[i]=prefix[i-1]+a[i];
for(int len=2;len<=n;len++){
for(int i=1;i+len-1<=n;i++){
int j=i+len-1;
for(int k=i;k<j;k++){
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+prefix[j]-prefix[i-1]);
}
}
}
cout<<dp[1][n]<<endl;
return 0;
}
这是最为经典的区间dp问题,对于此类问题,大家可以理解为将一块区间分为2半,在从这两半区间中去寻找更优解去最终解决这类问题。这里有几个关键点帮助大家理解:
1.对于初始化的模版是比较固定的,dp[i][j]的初始定义过程,以及dp[i][i]=0的定义。
2.对于左右端点的选择和范围也是比较固定的,j=i+len-1是右端点的距离。
2.
问题描述
小蓝和小红今天一起在房间里看完了 "雪国列车" 这部电影,看完之后他们感触颇深,同时他们想到了这样的一道题目:
现在有一个数轴,长度为 N(编号 1∼N),数轴上有 M 辆列车,列车的起点在 L,终点在 R。给定你 QQ 次询问,每次询问给出一个区间 [l,r],你要回答出在有多少辆列车 完全 在区间 [l,r] 内。
输入格式
第一行输入 3 个正整数,分别为 QN,M,Q。
接来下 M 行,每行输入 2 个正整数,代表每辆车的起点与终点。
接下来 Q 行,每行输入 2 个正整数,代表你需要回答出的区间列车数量。
输出格式
输出 Q 行,每行 1 个整数,代表区间内的列车数量。
#include <bits/stdc++.h>
using namespace std;
const int N=5e2+2;
int dp[N][N];
int main()
{
int n,m,q;
cin>>n>>m>>q;
for(int i=1;i<=m;i++){
int x,y;cin>>x>>y;
dp[x][y]+=1;
}
for(int len=2;len<=n;len++){
for(int i=1;i+len-1<=n;i++){
int j=i+len-1;
dp[i][j]+=dp[i+1][j]+dp[i][j-1]-dp[i+1][j-1];
}
}
while(q--){
int l,r;cin>>l>>r;
cout<<dp[l][r]<<'\n';
}
return 0;
}
这道题也是典型区间DP问题,和前面的题目类似,关键是对于区间的选择,大家也可以更好地理解。