前言
提醒:
文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。
其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。
文章目录
参考书籍
磁路与电感
1. 法拉第电磁感应定律
法拉第定律揭示了时变磁场产生电场的物理机制,其积分形式为:
∮
C
E
⋅
d
s
=
−
d
d
t
∫
S
B
⋅
d
a
\oint_C \mathbf{E} \cdot d\mathbf{s} = -\frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{a}
∮CE⋅ds=−dtd∫SB⋅da
物理意义:闭合回路
C
C
C 中的感应电动势等于穿过该回路所围面积
S
S
S 的磁通量变化率的负值。负号体现了楞次定律的方向性,即感应电流的磁场总是阻碍原磁通的变化。
2. 感应电压与磁链
在 高电导率绕组磁路 中(如变压器或电机绕组),导线内的电场
E
\mathbf{E}
E 近似为零,感应电压
e
e
e 完全由磁通变化决定:
e
=
N
d
φ
d
t
=
d
λ
d
t
e = N \frac{d\varphi}{dt} = \frac{d\lambda}{dt}
e=Ndtdφ=dtdλ
- 磁链 λ \lambda λ:定义为 λ = N φ \lambda = N\varphi λ=Nφ,单位为韦伯·匝(Wb·turn),表示线圈匝链的总磁通。
- 物理意义:多匝线圈的感应电压是单匝感应电压的 N N N 倍,体现了匝数的放大效应。
3. 电感与磁路分析
当磁路材料具有 恒定磁导率 或 气隙磁阻主导 时,磁链
λ
\lambda
λ 与电流
i
i
i 呈线性关系,电感定义为:
L
=
λ
i
=
N
2
R
tot
L = \frac{\lambda}{i} = \frac{N^2}{\mathcal{R}_{\text{tot}}}
L=iλ=RtotN2
- 磁阻 R \mathcal{R} R:类比电路中的电阻,磁阻 R = l μ A \mathcal{R} = \frac{l}{\mu A} R=μAl,其中 l l l 为磁路长度, μ \mu μ 为磁导率, A A A 为截面积。
- 气隙主导的电感:若气隙磁阻
R
g
=
g
μ
0
A
g
\mathcal{R}_g = \frac{g}{\mu_0 A_g}
Rg=μ0Agg 远大于铁心磁阻,电感简化为:
L = N 2 μ 0 A g g L = \frac{N^2 \mu_0 A_g}{g} L=gN2μ0Ag
表明电感正比于匝数平方、气隙截面积 A g A_g Ag,反比于气隙长度 g g g。
4. 非线性材料的限制
- 非线性磁导率:铁磁材料的磁导率 μ \mu μ 随磁场强度 H H H 非线性变化(饱和效应),导致 λ − i \lambda-i λ−i 关系非线性,此时电感 L L L 不再为常数。
- 工程近似:若气隙磁阻主导(如电机气隙),铁心非线性影响可忽略;或采用平均磁导率计算等效电感,以满足工程精度需求。
5. 应用与意义
- 电感设计:通过调整匝数 N N N、气隙尺寸 g g g 及材料磁导率,可优化电感值(如开关电源中的储能电感)。
- 能量转换:法拉第定律是发电机、变压器等设备的核心原理,将机械能转化为电能或实现电压变换。
- 局限性:在铁心饱和或高频涡流显著时,需结合磁滞损耗、涡流损耗等修正模型。
总结
法拉第定律及磁路分析为电磁设备的设计提供了理论基础。电感作为关键参数,其线性特性依赖于磁路的材料与结构。在工程实践中,需根据磁阻分布(如气隙主导或铁心主导)选择合适的简化模型,并注意非线性效应对精度的影响。
自感与互感
1. 磁势与磁通计算
- 总磁势:对于包含两个绕组的磁路(含气隙),总磁势由两个绕组的安匝数叠加决定:
F = N 1 i 1 + N 2 i 2 \mathcal{F} = N_1 i_1 + N_2 i_2 F=N1i1+N2i2 - 铁心磁通:假设铁心磁阻可忽略且气隙与铁心截面积相等(
A
c
=
A
g
A_c = A_g
Ac=Ag),磁通由总磁势驱动:
ϕ = ( N 1 i 1 + N 2 i 2 ) μ 0 A c g \phi = (N_1 i_1 + N_2 i_2) \frac{\mu_0 A_c}{g} ϕ=(N1i1+N2i2)gμ0Ac
该磁通决定了铁心材料的磁化状态(工作点)。
2. 自感与互感
- 磁链分解:基于线性叠加原理(恒值磁导率),各线圈的磁链可分解为自感和互感的贡献:
- 线圈1的磁链:
λ 1 = L 11 i 1 + L 12 i 2 \lambda_1 = L_{11} i_1 + L_{12} i_2 λ1=L11i1+L12i2
其中,自感 L 11 = N 1 2 μ 0 A c g L_{11} = N_1^2 \frac{\mu_0 A_c}{g} L11=N12gμ0Ac,互感 L 12 = N 1 N 2 μ 0 A c g L_{12} = N_1 N_2 \frac{\mu_0 A_c}{g} L12=N1N2gμ0Ac。 - 线圈2的磁链:
λ 2 = L 21 i 1 + L 22 i 2 \lambda_2 = L_{21} i_1 + L_{22} i_2 λ2=L21i1+L22i2
其中,自感 L 22 = N 2 2 μ 0 A c g L_{22} = N_2^2 \frac{\mu_0 A_c}{g} L22=N22gμ0Ac,互感 L 21 = L 12 L_{21} = L_{12} L21=L12(对称性)。 - 物理意义:自感由线圈自身电流产生,互感由相邻线圈电流产生,体现磁场耦合效应。
- 线圈1的磁链:
3. 单绕组感应电压与功率
- 单绕组电压:静态磁路(固定电感)的感应电压为:
e = L d i d t e = L \frac{di}{dt} e=Ldtdi
时变电感系统(如电机或变压器动态运行时)需额外考虑电感变化:
e = L d i d t + i d L d t e = L \frac{di}{dt} + i \frac{dL}{dt} e=Ldtdi+idtdL - 功率与能量存储:
- 瞬时功率:
p = i e = i d λ d t p = i e = i \frac{d\lambda}{dt} p=ie=idtdλ - 磁储能变化:
Δ W = ∫ λ 1 λ 2 i d λ \Delta W = \int_{\lambda_1}^{\lambda_2} i \, d\lambda ΔW=∫λ1λ2idλ - 恒定电感时的磁储能:
W = 1 2 L λ 2 = L 2 i 2 W = \frac{1}{2L} \lambda^2 = \frac{L}{2} i^2 W=2L1λ2=2Li2
- 瞬时功率:
4. 关键假设与限制
- 线性磁路:公式推导假设磁导率恒定(线性 B − H B-H B−H 关系),忽略铁磁材料的饱和及非线性效应。
- 气隙主导:假设气隙磁阻远大于铁心磁阻,磁通主要由气隙参数( g , A g , μ 0 g, A_g, \mu_0 g,Ag,μ0)决定。
- 能量守恒:储能公式仅在理想无损耗条件下成立,实际需考虑涡流、磁滞损耗等非理想因素。
总结
该磁路模型通过叠加原理分析了双绕组的自感、互感及能量存储特性,揭示了电感与匝数平方、气隙几何参数的直接关系(如 L ∝ N 2 μ 0 A g / g L \propto N^2 \mu_0 A_g / g L∝N2μ0Ag/g)。核心公式为变压器、耦合电感等设备的设计提供理论基础,但需注意非线性材料的限制及动态系统中时变电感的影响。实际应用中,需结合具体场景选择简化模型,平衡计算精度与工程可行性。