开放注册两个月后,ChatGPT用户数已经突破了1亿大关。这一现象级的成果背后,离不开人工智能算法、算力和数据的再次融合升级。ChatGPT的成功推出,引领了人工智能领域第三次浪潮的飞速发展,为全球各国和企业之间的AI竞争掀起了新的高潮。 在当前的人工智能领域,尚未形成绝对主导的技术依赖和产业生态。如果我国的新型举国体制能够发挥更大的作用,将会给AI的发展提供极为有力的支持。 ChatGPT目前已经深入到我们的日常生活中,并广泛应用于工作和学习等方面。虽然它可能还存在一些局限性,但未来五年或十年内,谁能预测ChatGPT对我们行业的改变呢?随着科技的不断升级,ChatGPT或许将逐渐变得更加智能化和实用化,为人们带来更多便利和惊喜。
1.人工智能的发展
1.1人工智能的发展历史
- 可能在ChatGPT爆火之前,我们在提起人工智能AI,我们往往想到的是科幻小说或电影中机器人的形象。
- 例如:美国作家艾萨克·阿西莫夫在1950写出的《我,机器人》在2004年改编成由威尔·史密斯所主演的同名电影。是一部关于人工智能的电影,它展示了在不公平的条件下,机器人的革命性力量。该电影描绘了一个机器人被叛逃的故事,同时也探讨了人工智能在未来的潜在应用。通过展示人工智能的潜力,该电影引发了对人工智能的思考和担忧,引发了对机器人是否会取代人类的担忧。通过展示人工智能的复杂性和危险性,该电影引发了对人工智能的安全和道德问题的思考。
- 不过,近年来,人工智能在科技领域的发展也是有目共睹,从无人驾驶汽车发展而引起的争论,到AlphaGo战胜了围棋顶级高手等等,都使得人工智能吸引了足够多的眼球。这也就导致了,人工智能的分支机器学习广受关注,机器学习的一支分支深度学习又成为近几年研究的热点。
- 人工智能是如何一步步发展起来的?下面就让我们一起领略一下人工智能发展历程。
- 1943年 - 神经元模型:心理学家沃伦·麦卡洛克和数学家沃特·皮茨在论文中提出了神经元模型,建立了神经网络的基础。
- 1956年 - 学术会议:达特茅斯会议是人工智能历史上的一个重要事件,讨论了计算思维、自然语言处理、机器学习等问题。
- 1975年 - 机器学习:机器学习是一种利用数据和算法进行模型训练和优化的技术,具有广泛的应用前景。
- 1986年 - 深度学习:深度学习是一种基于多层神经网络的机器学习方法,其发展推动了图像分类、语音识别等领域的进步。
- 1997年 - 深蓝:IBM的深蓝计算机在国际象棋比赛中击败了世界冠军加里·卡斯帕罗夫,成为人工智能领域的突破之一。
- 2012年 - ImageNet:ImageNet是一个大规模图像识别数据集,其推动了深度学习和卷积神经网络技术的发展。
- 2016年 - AlphaGo:谷歌DeepMind公司的AlphaGo击败了世界围棋冠军柯洁,引起了全球对人工智能技术的广泛关注。
- 2020年 - GPT-3:OpenAI公司推出的GPT-3是自然语言处理领域的一项重大突破,其表现超越了以往任何一款自然语言处理模型。
人工智能在经历长达60年的发展中,现如今已经是我们人类生活中不可或缺的一部分,全球三大顶尖科学家王维嘉,郭毅可,Pieter Abbeel也提出:未来是人机共生的二元社会。AI的颠覆性优势是未来极有可能不再有车祸,人类在数学、物理、化学、生物等领域将有新的探索,还可以帮助我们消除许多疾病,并助力人类完成创举,比如去火星。
1.2人工智能多元化
1982年美国物理学家约翰·霍普菲尔德提出了震惊世界的Hopfield网络模型其结构类似于一个自反馈的二进制神经元系统。它主要应用于模式识别、优化问题和最小化能量函数等方面。 Hopfield网络的基本结构包括神经元(节点)和连接权重矩阵。每个神经元都是二进制的,取值为+1或-1,而连接权重矩阵则决定了神经元之间的相互作用和关系。根据Hopfield网络模型的设计,连接权重矩阵是对称的,并且对角线元素为0。 Hopfield网络的运行过程分为训练和测试两个阶段。在训练阶段,将一组输入样本向量存储在网络中,并根据这些样本计算出连接权重矩阵。在测试阶段,输入一个新的样本向量后,通过迭代计算神经元的输出,直到网络达到稳定状态。此时,网络的输出即为最终的结果,该结果可以与输入向量进行比较和识别。
在基于这种网络结构上人工智能实现了自我的多元化,为了响应符合社会的需求与规定,AI的多元化主要为一下几个方面:
- 技术多元化:人工智能技术包括机器学习、深度学习、自然语言处理、计算机视觉、强化学习等多种形式,每种技术都有其独特的应用场景和优势。
- 应用领域多元化:人工智能已经广泛应用于金融、医疗、交通、教育、娱乐等各个领域,为这些行业提供了更加高效和便利的解决方案。
- 产业分支多元化:在人工智能领域,涉及到硬件制造、算法研究、软件开发、数据采集等多个产业分支,每个分支都在不断壮大和发展。
- 思想方法多元化:人工智能的发展需要跨越学科边界,需要借鉴哲学、社会学、心理学等多个领域的思想方法,在此基础上进行创新和实践。
- 价值观多元化:人工智能的应用与发展应当兼顾技术的进步和社会的需求,并注重保护用户隐私和数据安全,同时探索人机合作和可持续发展的道路。
2.什么是ChatGPT
2.1ChatGPT的主要功能
- OpenAI官网表示,他们已经成功训练了一个名为ChatGPT的语言模型,该模型可以通过对话方式进行交互,并以优化对话为目标。除了提供详细响应外,ChatGPT还能够回答后续问题、承认错误、挑战不正确的前提并拒绝不适当的请求。
- 与过去“固定场景下干固定事”的人工智能不同,ChatGPT需要面对的是一个“open world”(开放世界)。当前全球上亿用户向其提问的问题是不可预测的,这也是AI开发的难点之一。
- ChatGPT目前的系统功能主要包括文本生成、聊天机器人、语言问答、语言翻译、自动文摘、绘画功能、编程功能和视频生成等八大模块,具备广泛的应用前景。
2.2ChatGPT对企业带来的多种优势
- 提高客户满意度:ChatGPT可以为企业提供更加智能和个性化的客户服务,通过自动回复、常见问题解答等方式,提升客户满意度。
- 降低人工成本:ChatGPT可以代替人工客服处理一些简单重复性的问题,降低企业的人工成本。
- 提高效率:ChatGPT可以快速响应用户的请求,提高企业处理问题的效率和速度。
- 拓展营销渠道:ChatGPT可以作为一种新的营销渠道,通过与用户交互收集数据和反馈,为企业拓展市场提供支持。
- 数据分析和挖掘:ChatGPT可以通过对话收集用户数据和反馈,进行数据分析和挖掘,从中获取商业洞察,为企业决策提供参考和依据。
3.人工智能对世界未来的影响
3.1人工智能的现状
- 目前社会上存在一些人工智能的“炒作”,例如声称人工智能系统的智能水平即将全面超越人类水平、机器人将在30年内统治世界、人类将成为人工智能的奴隶等。这些有意无意的“炒作”和错误认知可能会对人工智能的发展带来不利影响。
- 因此,制定人工智能发展的战略、方针和政策时,首先要准确把握人工智能技术和产业发展的现状。根据可应用性分类,人工智能主要可分为专用人工智能和通用人工智能两种类型。专用人工智能面向特定任务(比如下围棋),其任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单等优势,已经在局部智能水平的单项测试中超越了人类智能,形成了人工智能领域的单点突破。而通用人工智能则是指能够像人类一样具备多个智能能力的人工智能系统,其发展尚处于初级阶段。
- 近年来,人工智能的发展主要集中在专用人工智能领域。虽然在一些任务中已经取得了重要突破,但距离通用人工智能还存在巨大的技术难题。因此,我们需要对人工智能发展进行清醒客观的认识,避免过度夸大其潜力和影响,同时注重人工智能技术的研究、应用和规范化管理,推动人工智能产业的健康发展。
- 但是,人工智能的通用智能仍处于起步阶段。相对于人类大脑这种通用智能系统,目前的人工智能系统只能处理特定领域内的问题,其概念抽象和推理决策等“深层智能”方面的能力还很薄弱。因此,虽然专用人工智能领域已经取得了突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远。
- 目前,全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。例如,谷歌在2017年的年度开发者大会上提出了“人工智能优先”的发展战略,微软也将人工智能作为公司发展愿景之一。人工智能领域正处于创新创业的前沿。据麦肯锡公司的报告,2016年全球人工智能研发投入超过300亿美元,并且持续高速增长;CB Insights的报告显示,2017年全球共有1100家新成立的人工智能创业公司,人工智能领域共获得投资152亿美元,同比增长141%。
- 虽然存在通用人工智能发展的挑战,但是人工智能的创新和应用已经在多个领域取得了显著成果,具有非常广阔的发展前景。企业需要积极关注并学习相关技术,把握人工智能的发展趋势和商业机遇,为自身的发展寻求突破口和创新点。
3.2人工智能的未来发展趋势
我国目前对于人工智能主要战略目的与发展的趋势以2个5年计划为主,今后的第一五年主要将人工智能的相关技术与运用方法达到世界领先水平,主要利用人工智能的强大算法与能力让它成为提高企业与产业的主要动力,设定好人工智能相关的法律,法规建设一个人人幸福的智能社会。第二个五年主要细节的完善人工智能在社会中的运用与顶级算法的提升,主要从以下五个方面出发:
- 多领域深度融合:未来人工智能技术将会和各行各业进行深度融合,不仅包括传统的工业、金融、医疗等领域,还有包括娱乐、旅游、教育等生活领域。
- 模型自动化:目前的机器学习和深度学习模型的训练和优化需要大量的数据和专业知识,但未来的人工智能系统将会实现模型自动化,从而减少对大量数据和专业知识的依赖。
- 人机自然交互:未来人工智能系统将会更加注重与人的自然交互。这意味着人类可以通过语音、手势、面部表情等多种方式与人工智能进行交互,使得人工智能能够更好地理解人的需求和意图。
- 自学习和自适应:未来的人工智能系统将会更加注重自学习和自适应能力,使得它们能够自主学习并处理复杂的问题,从而不断提高自身的智能水平。
- 透明化和可解释性:未来的人工智能系统将会更加注重透明化和可解释性。这意味着人们需要知道人工智能是如何做出决策的,使得人们能够信任和使用人工智能系统。
3.3全球对人工智能的客观看法
马斯克曾经说过:他认为人工智能是“存在于人类未来的最大威胁”。他警告说,如果人工智能不受控制,那么它可能会导致失业、社会混乱甚至毁灭性战争。同时盖茨和霍金都曾表明过人工智能可以帮助解决许多全球性的问题,并提高人们的生活质量。但他也指出,这种技术需要规范化管理,以确保其不会成为严重的安全威胁。扎克伯格和周鸿祎都表示过人工智能是为了改善人们生活而来,其他的不正当用处都是不对的,对此我们还需要对人工智能的不断完善与开发。
由此全球伟大的科学家可知许多知名人士和专家学者都对人工智能进行了深入的研究和思考,并提出了不同的看法和建议。这些观点和建议有助于引导全球社会更加理性地认识和应用人工智能技术,从而推动其稳健、可持续、安全的发展。
人工智能的发展未来是无限的,对人工智能AI有兴趣的伙伴们可以关注,点赞多多支持。祝你天天开心,感谢观看。
在线教程
- 麻省理工学院人工智能视频教程 – 麻省理工人工智能课程
- 人工智能入门 – 人工智能基础学习。Peter Norvig举办的课程
- EdX 人工智能 – 此课程讲授人工智能计算机系统设计的基本概念和技术。
- 人工智能中的计划 – 计划是人工智能系统的基础部分之一。在这个课程中,你将会学习到让机器人执行一系列动作所需要的基本算法。
- 机器人人工智能 – 这个课程将会教授你实现人工智能的基本方法,包括:概率推算,计划和搜索,本地化,跟踪和控制,全部都是围绕有关机器人设计。
- 机器学习 – 有指导和无指导情况下的基本机器学习算法
- 机器学习中的神经网络 – 智能神经网络上的算法和实践经验
- 斯坦福统计学习
有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
人工智能书籍
- OpenCV(中文版).(布拉德斯基等)
- OpenCV+3计算机视觉++Python语言实现+第二版
- OpenCV3编程入门 毛星云编著
- 数字图像处理_第三版
- 人工智能:一种现代的方法
- 深度学习面试宝典
- 深度学习之PyTorch物体检测实战
- 吴恩达DeepLearning.ai中文版笔记
- 计算机视觉中的多视图几何
- PyTorch-官方推荐教程-英文版
- 《神经网络与深度学习》(邱锡鹏-20191121)
- …
第一阶段:零基础入门(3-6个月)
新手应首先通过少而精的学习,看到全景图,建立大局观。 通过完成小实验,建立信心,才能避免“从入门到放弃”的尴尬。因此,第一阶段只推荐4本最必要的书(而且这些书到了第二、三阶段也能继续用),入门以后,在后续学习中再“哪里不会补哪里”即可。
第二阶段:基础进阶(3-6个月)
熟读《机器学习算法的数学解析与Python实现》并动手实践后,你已经对机器学习有了基本的了解,不再是小白了。这时可以开始触类旁通,学习热门技术,加强实践水平。在深入学习的同时,也可以探索自己感兴趣的方向,为求职面试打好基础。
第三阶段:工作应用
这一阶段你已经不再需要引导,只需要一些推荐书目。如果你从入门时就确认了未来的工作方向,可以在第二阶段就提前阅读相关入门书籍(对应“商业落地五大方向”中的前两本),然后再“哪里不会补哪里”。
有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓