前言
AI浪潮已经来袭,我们每个人都身处其中,我相信,每个人都有必要学习AI。
但问题是,该从何学起?我相信这是大部分之前没接触过AI的人的问题,我也是其中一员。我不是AI科学家,之前也没有技术基础,所以,我想将自己的学习结果记录下来,一方面是用自己能理解的话讲出来自己学到的知识,另外一方面也是分享给所有想要在这波浪潮中不被冲走的人。
我是一个不懂技术的普通人,所以这个系列就叫做「普通人学AI」,这是该系列的第三篇文章。
使用一门技术,最重要的就是要弄明白它的能力边界。
任何技术都有其优势,也有其劣势;大模型也不例外,大模型虽然很强大,但它仍然有它的能力边界,超过能力边界的问题它也无能为力。
从技术的方向来说,大模型能够进行自然语言处理(NLP),计算机视觉处理(CV)。而从应用的角度来说,目前大模型主要应用于对话(问答)类,内容生成——包括文字,图片,视频等;以及代码开发和智能体(AI Agent)。但具体大模型能做什么,目前为止大多数企业都处于探索阶段,没有一个统一的定论。
本篇文章主要介绍下LLMs的能力边界。
一、大模型的工作机制
想象一下,LLM就像一个能“读懂”海量文本的超级大脑。它的核心是Transformer架构,通过分析大量书籍、网页等文本数据,学习预测一句话中下一个词该是什么。具体来说,工作流程分三步:
1. 拆解与编码:从文字到数字密码
拆解(Tokenization)
模型先将句子拆成更小的单元,比如单词或词块(例如“banking”拆成“bank”和“ing”)。这就像把文章剪成一个个小纸片,方便后续处理。
示例:句子“The cat sat on the mat”会被拆成 ["The", "cat", "sat", "on", "the", "mat"]。
编码(Embedding)
每个词块被转换成数字密码(向量),这些密码不仅包含词义,还能体现词之间的关系。例如,“猫”和“狗”的密码会比“猫”和“桌子”更接近。
2. 层层加工:捕捉上下文关系
模型内部有多层“加工车间”(Transformer层),每层包含两个关键环节:
重点标记(自注意力机制)
模型会分析句子中哪些词关联更强。比如在“河边的银行关门了”中,它会标记“银行”和“河边”的关系,避免误解成“金融机构”。
原理:通过计算词之间的相关性分数,动态调整每个词的重要性。
信息提炼(前馈网络)
对标记后的信息进一步加工,提取更复杂的特征,比如时间顺序(如理解“昨天买的书今天到”中的时间差)。
3. 综合理解:从局部到全局
经过多层处理后,模型会生成一个综合的“思维图谱”,既能抓住局部细节(比如动词时态),也能把握全文逻辑(比如故事主线)。这种能力让它能完成复杂任务,比如写诗、翻译,甚至模仿不同作家的文风。
举个实际例子
当输入“人工智能将___”时,模型会:
① 拆解成 ["人工", "智能", "将"] → ② 通过多层计算,发现“改变世界”“带来挑战”等常见搭配 → ③ 结合上下文选择最合理的词补全句子。
通过这种“拆解-分析-预测”的机制,LLM不仅能生成流畅文本,还能理解语义、推理逻辑,甚至展现一定的创造力。而这一切的核心,都源于Transformer架构对上下文关系的强大捕捉能力。
二、大模型擅长之处
1.语言理解与翻译
大模型可以理解文本中的语义关系,包括词汇语义、句子语义以及篇章语义。在阅读理解任务中,能够准确回答关于文章内容的问题,如主旨大意、细节信息等。
大模型甚至能够识别语义相似性和差异性,如判断 “生气” 和 “气愤” 是相似的概念,“西瓜” 和 “草莓” 是不同类型的水果等。
大模型进行多种语言的翻译时也能表现出色。能够将一种语言的文本准确地翻译成另一种语言,并且在翻译过程中尽量保留原文的语义和风格。例如,将英语句子 “Hello, how are you?” 翻译成中文 “你好,你怎么样?”,同时还能处理一些复杂的句子结构和文化背景相关的内容。
2.文本生成
LLMs大模型具备非常强大的文本生成能力,其生成能力包括叙事文学、学术写作、创意表达等多元领域的文本类型。比如在故事创作场景中,大模型有着出色的开放式场景构建能力。
举个例子,当大模型收到"在一个神秘的海域里"这类开放式场景提示时,不仅能自动生成人物设定、情节发展及环境描写,更能通过因果关系推理构建出逻辑闭环,例如为神秘海域设计出符合生态规律的共生体系,或者为奇幻角色赋予符合行为心理学的行为动机。
并且大模型生成的文本在语法和词汇的使用上通常较为流畅自然。模型经过大量文本数据的训练,能够学习到自然语言的语法规则和常用词汇搭配,从而生成符合语言习惯的句子。
3.模式识别与知识学习
现在大模型就像个自学成才的语言大师:首先它像学霸整理课堂笔记那样,从海量文章中自动归纳出中文的语法要领(比如发现"昨天去了商店"是正确的时态表达,能自动修正错误的"去商店在昨天"这样的语序)。
接着像编织知识网兜,把相关概念自动挂钩——想到医生就关联医院CT机,聊起学生就浮现教室课桌,如同人脑建立知识联结的本能。
更惊艳的是它的成语工具箱,不仅熟记"一石二鸟""趁热打铁"等数百个惯用语,还能像资深编剧根据不同场合灵活切换:给工作报告建议时用"事半功倍",煲职场鸡汤时改成"磨刀不误砍柴工"。
整套系统相当语言全科医生:既擅长纠正语法感冒,又能透析文字深意,更懂得什么场合该用什么表达,就像语文老师、辞典编辑和公关顾问的三重技能叠加体。
4.多领域应用潜力
大模型可以通过知识库实时响应各类信息查询请求,如针对"太阳系有哪些行星?"的提问快速调用天文学数据实现精准解答。
在创造性写作支持中,大模型同步提供内容生成三阶赋能:基于知识图谱的内容深度延伸(如还原历史事件多维真相)、跨领域创意灵感激发(生成多元视角的文学素材)、智能文本精修优化(完成从措辞调整到语体风格适配的全流程润色),形成覆盖信息检索到创作升华的完整智能服务链。
三、大模型不擅长之处
1.推理和规划能力
当前的大模型在逻辑推理和计划制定方面仍有明显短板。对于因果关系理解,虽然知道"下雨导致地湿"的基本事实,但难以想象"如果没下雨地面会如何"之类的假设,这就像医生只看病人发烧就开退烧药,而不深究发烧的真正病因。
遇到像"森林火灾如何影响整个生态链"这类多重因果交织的问题时,AI常会陷入逻辑迷宫难以厘清头绪。
在需要分步骤处理的任务中,虽然能列举出"订酒店、买机票、排行程"等要素,却常出现先规划游玩路线再确认住宿位置的混乱安排,就像新手项目经理在资源分配和时间把控上拿捏不准关键节点,容易顾此失彼。这两个核心短板本质上都源于对事物间复杂联接关系和动态变化的把控不足。
2.数值处理与计算
当前大模型在数字处理上存在显著缺陷。在数值识别阶段,其分解数字的方式如同"笨手笨脚组装积木",导致连简单的数值比较都容易出错——像分不清"9.11比9.9大"这种小学生的基本认知,误将数字当字母逐个比较。进行加减乘除时更显吃力,连"127加677"这种三位数计算都可能失误得离谱,计算精度还不如手写草稿的孩童。
对数字概念的认知仅停留在文字符号层面,面对"GDP增长0.5%意味着什么""网购优惠如何叠加更划算"这类与实际生活结合的数值问题时,大模型就像只会机械套用模板的实习生,给出的分析往往脱离实际情况,解释家庭理财中的利率计算时会更显出算术逻辑的生硬牵强。
3.事实准确性与一致性
大模型的幻觉就像时常会像想象力过剩的作家,说话间不知不觉就"自行加戏"。当谈历史事件时,它会无中生有地说某个皇帝用过智能手机,像煞有介事地描绘虚构场景。回答超出知识库的问题时更是天马行空,好比查无出处却坚持说巴黎铁塔建在长江边。
这种"自由发挥"在创作故事时尤为明显——原本叫做王强的男主转眼变成李大壮,故事场景也从古代皇宫穿越到太空站却毫无过渡。
更让人哭笑不得的是多轮对话场景中,刚刚白纸黑字说好的五千块预算限制,转眼推荐给你上万块的昂贵商品,就像忘记谈话重点的聊天对象。这类缺陷导致AI在某些场景中表现得既像迷糊的造梦者,又像容易走神的对话者。
4.偏见与缺乏理解深度
当前的大模型存在着两个关键缺陷。它就像一个只会照单全收的学徒,不仅延续了训练时接触到的偏见(比如将"空姐"自动对应女性,"程序员"默认指男性),还会像复读机般不断强化这些过时的社会印象。
更重要的是,它的知识体系像栋没有地基的纸牌屋——虽然能头头是道地解释光合作用,但若追问"树叶在夜晚会发生什么"却可能说出"释放阳光"的荒唐答案。无论是讨论哲学悖论还是量子物理,它输出的内容看似专业实则通篇似是而非,就像按菜谱炒菜却完全不懂食材为何会变色的厨子,唯一擅长的是把海量信息碎片拼凑成看似合理的"正确答案"。
5.特定领域专业知识应用
当前大模型就像个教科书记忆能手兼职场新人——背得下整本医学教材却不会把脉诊断,遇复杂病情可能把肺炎误当感冒;读得通法律条文但碰上真实官司,判断力还比不过律所实习生。
更明显的是,它的知识储备就像智能手机不联网时会变笨:当生物学家讨论基因编辑最新突破时,它还在用三年前的旧论文作答;面对刚在社交媒体炸开的科技新闻,输出的分析可能还停留在去年版本。这种状态好比带着2019年地图在2024年的城市找新开的网红店,能指路但不够靠谱。
总的来说,现在的大模型就像个全能的文字魔术师:它能秒回客户咨询、自动生成爆款文案,甚至能把《哈姆雷特》翻译成四川方言。商界用其分析市场趋势,学生靠它辅导论文写作,普通人日常查个菜谱问个天气更是信手拈来。
不过这个魔法背后还有不少小bug——数学题常算错得像小学生,编故事时总冒出"火星上发现大熊猫"这种离奇设定,分析财务数据可能带着性别偏见给出建议。就像智能手机早期总死机重启,这些成长中的系统正通过持续进化提升稳定性。
要让AI真正成为人类的智慧伙伴,还需要工程师们像雕琢美玉般持续打磨,让它的智能之光既能照亮现实,又不产生认知虚影。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓