在AI技术迅猛发展的今天,理解大型语言模型(LLMs)背后的技术变得前所未有的重要。Andrej Karpathy,这位曾在Tesla担任高级AI总监、在OpenAI担任研究员、并在斯坦福大学获得神经网络博士学位的专家,近日发布了一部长达3.5小时的深入教程视频,专门解析了ChatGPT等LLMs的技术细节。这不仅仅是对技术爱好者的福音,更是对所有希望了解AI如何塑造我们未来的人的一次难得的学习机会。
Karpathy的教程视频名为“Deep Dive into LLMs like ChatGPT”,它详细覆盖了从模型的预训练、监督微调到强化学习的各个阶段。视频通过以下几个主要部分来解析:
-
预训练阶段 - 视频从数据收集、分词、Transformer神经网络的输入输出及内部工作原理开始,深入讲解了模型如何通过大量文本数据进行学习。通过GPT-2和Llama 3.1的例子,Karpathy展示了模型推理的实际应用。
-
监督微调 - 这一部分讨论了如何通过对话数据来微调模型,包括模型的“心理学”如幻觉、工具使用、知识和工作记忆、自我认知等。Karpathy解释了为什么模型需要token来思考,以及如何处理拼写和不规则智能。
-
强化学习 - 视频详细讲解了通过实践如何完善模型的过程,引用了如DeepSeek-R1、AlphaGo以及RLHF(人类反馈强化学习)等例子。
Karpathy的目标是让这些复杂的技术概念变得对普通观众可理解,即使没有技术背景也能从中获益。这不仅是技术的深度探讨,更是对于AI当前能力和未来发展的一种思考。
与Karpathy之前发布的简短介绍性视频不同,这次的教程是经过精心策划的,更为全面和深入,旨在为观众提供关于LLM技术的全景图。即使你已经看过他之前的视频,这次的教程仍然值得观看,提供了更多细节和新的视角。
课程主要内容:
00:00:00简介
00:01:00预处理数据(互联网)`
`00:07:47 Tokenization
00:14:27神经网络I/O
00:20:11神经网络内部
00:26:01推理
00:31:09 GPT-2:培训和推理
00:42:52 Llama 3.1基本模型推理
00:59:23训练后训练
01:01:06训练后数据(对话)
01:20:32幻觉,工具使用,知识/工作记忆
01:41:46自我知识
01:46:56型号需要代币才能思考
02:01:11重新访问:模型在拼写方面挣扎
02:04:53锯齿状的情报
02:07:28有监督的填充以加强学习
02:14:42强化学习
02:27:47 DeepSeek-R1
02:42:07 Alphago
02:48:26从人类反馈(RLHF)学习的强化学习
03:09:39即将到来的事情预览
03:15:15跟踪LLMs
03:18:34哪里可以找到LLMs
03:21:46大摘要
课程链接:https://shorturl.at/AkJw3
Andrej Karpathy简介:
安德烈(Andrej)是OpenAI(2015)的创始成员,然后是特斯拉(Tesla)AI高级主任(2017-2022),现在是正在建立AI本地学校的Eureka Labs的创始人。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓