本文将详细介绍如何在虚拟化平台 Proxmox Virtual Environment(PVE)配置显卡直通,将宿主机上的物理显卡直接分配给 AI 虚拟机使用。
1. 环境介绍
1.1 硬件环境
- 服务器: 科脑 X99-D4、2*32G DDR4 内存、Intel E5-2683 v4
- 显卡:NVIDIA P104-100
- BIOS:开启 VT-x/VT-d 类似的虚拟化扩展
本文选择纯矿卡 NVIDIA P104-100 作为演示,配置方法同样适用于其他型号显卡。
1.2 软件环境
- 虚拟化平台:Proxmox Virtual Environment 8.0.4
- AI 虚拟机: ubuntu 22.04
本文选择 ubuntu 22.04 作为演示,配置方法同样适用于其他操作系统。
2. 配置 PVE 开启显卡直通
2.1 开启 IOMMU 功能
- 配置 Grub 配置文件,
vi /etc/default/grub
ini
复制代码
# 修改 GRUB_CMDLINE_LINUX_DEFAULT 配置为
GRUB_CMDLINE_LINUX_DEFAULT="quiet intel_iommu=on iommu=pt initcall_blacklist=sysfb_init pcie_acs_override=downstream"
#注意:pve 7.2 以前版本使用
GRUB_CMDLINE_LINUX_DEFAULT="quiet intel_iommu=on iommu=pt video=efifb:off,vesafb:off pcie_acs_override=downstream"
说明:
- 更新 GRUB
typescript
复制代码
update-grub
# 正确的结果如下
root@pve9:~# update-grub
Generating grub configuration file ...
Found linux image: /boot/vmlinuz-6.2.16-8-pve
Found initrd image: /boot/initrd.img-6.2.16-8-pve
Found linux image: /boot/vmlinuz-6.2.16-3-pve
Found initrd image: /boot/initrd.img-6.2.16-3-pve
Found memtest86+x64 image: /boot/memtest86+x64.bin
done
- 加载对应的内核模块
javascript
复制代码
echo vfio >> /etc/modules
echo vfio_pci >> /etc/modules
echo vfio_iommu_type1 >> /etc/modules
# echo vfio_virqfd >> /etc/modules # pve8 不需要配置
- 重启 PVE 系统
复制代码
reboot
- 验证是否成功 启用IOMMU
ini
复制代码
dmesg | grep -E "DMAR|IOMMU"
# 正确的关键结果如下
root@pve9:~# dmesg | grep -E "DMAR|IOMMU"
[ 0.000000] Warning: PCIe ACS overrides enabled; This may allow non-IOMMU protected peer-to-peer DMA
[ 0.142816] DMAR: IOMMU enabled
[ 1.036519] DMAR: Intel(R) Virtualization Technology for Directed I/O
- 验证 VFIO 模块
perl
复制代码
dmesg | grep -i vfio
# 正确的结果如下
root@pve9:~# dmesg | grep -i vfio
[ 3.759097] VFIO - User Level meta-driver version: 0.3
- 验证是否支持 中断重映射
ini
复制代码
dmesg | grep 'remapping'
# 正确的结果如下
# intel
[ 0.175675] DMAR-IR: Queued invalidation will be enabled to support x2apic and Intr-remapping.
[ 0.177198] DMAR-IR: Enabled IRQ remapping in x2apic mode
# 但是我的环境比较特殊,即使 BIOS 里开启了 X2APIC,也会报错,所以启用了 2.3 小节的 允许不安全的中断设置。不影响显卡的直通使用。
root@pve9:~# dmesg | grep 'remapping'
[ 0.390774] DMAR-IR: Enabled IRQ remapping in xapic mode
[ 0.390775] x2apic: IRQ remapping doesn't support X2APIC mode
2.2 开启显卡直通
- 屏蔽默认驱动
bash
复制代码
# 直通 NVIDIA 显卡,请使用下面命令
echo "# NVIDIA" >> /etc/modprobe.d/blacklist.conf
echo "blacklist nouveau" >> /etc/modprobe.d/blacklist.conf
echo "blacklist nvidia" >> /etc/modprobe.d/blacklist.conf
echo "blacklist nvidiafb" >> /etc/modprobe.d/blacklist.conf
echo "blacklist nvidia_drm" >> /etc/modprobe.d/blacklist.conf
echo "" >> /etc/modprobe.d/blacklist.conf
# 直通 AMD 显卡,请使用下面命令
echo "# AMD" >> /etc/modprobe.d/blacklist.conf
echo "blacklist amdgpu" >> /etc/modprobe.d/blacklist.conf
echo "blacklist radeon" >> /etc/modprobe.d/blacklist.conf
# 本文服务器 NVIDIA 和 AMD 显卡各有一块,因此都执行
2.3 其他有用的配置
- 允许不安全的中断
bash
复制代码
## 其他参数配置
# 允许不安全的中断
echo "options vfio_iommu_type1 allow_unsafe_interrupts=1" > /etc/modprobe.d/iommu_unsafe_interrupts.conf
- 为 NVIDIA 卡添加稳定性修复和优化
bash
复制代码
echo "options kvm ignore_msrs=1 report_ignored_msrs=0" > /etc/modprobe.d/kvm.conf
# 忽略异常,防止虚拟机异常导致宿主机崩溃
# ignore_msrs : 忽略异常
# report_ignored_msrs : 是否报告异常
2.4 更新内核引导文件
- 更新内核引导文件
sql
复制代码
update-initramfs -k all -u
# 正确的执行结果如下
root@pve9:~# update-initramfs -k all -u
update-initramfs: Generating /boot/initrd.img-6.2.16-8-pve
Running hook script 'zz-proxmox-boot'..
Re-executing '/etc/kernel/postinst.d/zz-proxmox-boot' in new private mount namespace..
No /etc/kernel/proxmox-boot-uuids found, skipping ESP sync.
update-initramfs: Generating /boot/initrd.img-6.2.16-3-pve
Running hook script 'zz-proxmox-boot'..
Re-executing '/etc/kernel/postinst.d/zz-proxmox-boot' in new private mount namespace..
No /etc/kernel/proxmox-boot-uuids found, skipping ESP sync.
- 重启系统
复制代码
reboot
3. 创建虚拟机验证测试
3.1 创建虚拟机并添加显卡
在 PVE 系统中创建 ubuntu 虚拟机,过程略。
添加 NVIDIA P104-100 显卡到虚拟机。
- 选择要添加显卡的虚拟机
- 「硬件」->「添加」,选择 PCI 设备
- 选择对应的显卡设备,并勾选所有功能
- 配置完成后,点击「添加」按钮,最后启动虚拟机。
3.2 虚拟机内部验证
虚拟机启动后需要安装显卡驱动,本文仅为了演示 PVE 开启显卡直通功能。至于如何在虚拟机里安装显卡驱动,后续会有专文介绍。
显卡驱动安装完成后,执行 NVIDIA 自带的管理命令,查看显卡信息。
sql
复制代码
ubuntu@ubuntu:~$ nvidia-smi
Sat May 4 09:42:36 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.54.15 Driver Version: 550.54.15 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA P104-100 On | 00000000:00:10.0 Off | N/A |
| 72% 35C P8 6W / 180W | 2MiB / 8192MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
以上,就是今天分享的内容,后续我会分享更多关于大模型、Ollama 的内容。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓